UDP

TCP, there is one other transport-level protocol that is in common use as part of the TCP/IP suite: the User Datagram Protocol (UDP), specified in RFC 768. UDP provides a connectionless service for application-level procedures. Thus, UDP is basically an unreliable service; delivery and duplicate protection are not guaranteed. However, this does reduce the overhead of the protocol and may be adequate in many cases.

The strengths of the connection-oriented approach are clear. It allows connection-related features such as flow control, error control, and sequenced delivery. Connectionless service, however, is more appropriate in some contexts. At lower layers (internet, network), a connectionless service is more robust . In addition, it represents a "least common denominator" of service to be expected at higher layers. Further, even at transport and above there is justification for a connectionless service. There are instances in which the overhead of connection establishment and termination is unjustified or even counterproductive. Examples include the following:

Inward data collection: Involves the periodic active or passive sampling of data sources, such as sensors, and automatic self-test reports from security equipment or network components. In a real-time monitoring situation, the loss of an occasional data unit would not cause distress, because the next report should arrive shortly.

Outward data dissemination: Includes broadcast messages to network users, the announcement of a new node or the change of address of a service, and the distribution of real-time clock values.

Request-response: Applications in which a transaction service is provided by a common server to a number of distributed TS users, and for which a single request-response sequence is typical. Use of the service is regulated at the application level, and lower-level connections are often unnecessary and cumbersome.

Real-time applications: Applications, such as voice and telemetry, that involves a degree of redundancy and/or a real-time transmission requirement. These must not have connection-oriented functions such as retransmission.

Thus, there is a place at the transport level for both a connection-oriented and a connectionless type of service.

UDP sits on top of IP. Because it is connectionless, UDP has very little to do. Essentially, it adds a port addressing capability to IP. The header includes a source port and destination port. The Length field contains the length of the entire UDP segment, including header and data. The checksum is the same algorithm used for TCP and IP. For UDP, the checksum applies to the entire UDP segment plus a pseudoheader prefixed to the UDP header at the time of calculation and which is the same pseudoheader used for TCP. If an error is detected, the segment is discarded and no further action is taken.

The checksum field in UDP is optional. If it is not used, it is set to zero. However, it should be pointed out that the IP checksum applies only to the IP header and not to the data field, which in this case consists of the UDP header and the user data. Thus, if no checksum calculation is performed by UDP, then no check is made on the user data at either the transport or internet protocol layers.