
Chapter 3 ■ Designing a RESTful API Interface

43

HTTP defines 40 status codes to communicate the execution results of a client's
request. The status code is divided into the following five categories.

•	 1xx Informational: Communicates transfer protocol level
information.

•	 2xx Success: Communicates that the request from the client was
successfully received, understood, and accepted.

•	 3xx: Redirection: Communicates that additional action needs
to be taken by the user agent like browser in order to fulfil the
request.

•	 4xx Client Error: Indicates errors caused by the client.

•	 5xx Server Error: Indicates that server is aware that an error
occurred while processing the request and cannot process it
further.

Normally, 2xx and 3xx status codes are treated as success codes. Any 4xx or 5xx status
code is treated as an error code.

Table 3-3 lists the most commonly used success codes.

Table 3-3.  The Most Commonly Used Success Codes

Status Code Reason-Phrase Meaning

200 OK Indicates that the request has been
processed successfully.

201 Created Indicates that the request has been
processed and a new resource has been
created successfully.

202 Accepted Indicates that the request has been
received by the server and is being
processed asynchronously.

204 No Content Indicates that the response body has been
purposely left blank.

301 Moved Permanently Indicates that a new permanent URI has
been assigned to the client’s requested
resource.

303 See Others Indicates that the response to the request
can be found in a different URI.

304 Not Modified Indicates that the resource has not been
modified for the conditional GET request
of the client.

307 Use Proxy Indicates that the request should be
accessed through a proxy URI specified in
the Location field.

Chapter 3 ■ Designing a RESTful API Interface

44

Table 3-4 lists the most commonly used error codes.

Table 3-4.  The Most Commonly Used Error Codes

Status Code Reason Phrase Meaning

400 Bad Request Indicates that the request had some
malformed syntax error due to which it
could not be understood by the server.
Probable reason is missing mandatory
parameters or syntax error.

401 Unauthorized Indicates that the request could not
be authorized, possibly due to missing
or incorrect authentication token
information.

403 Forbidden Indicates that the request was
understood by the server but it could
not be processed due to some policy
violation or the client does not have
access to the requested resource.

404 Not Found Indicates that the server did not find
anything matching the request URI.

405 Method Not Allowed Indicates that the method specified in
the request line is not allowed for the
resource identified by the request URI.

408 Request Timeout Indicates that the server did not receive
a complete request within the time it was
prepared to wait.

409 Conflict Indicates that the request could not
be processed due to a conflict with the
current state of the resource.

414 Request URI Too Long Indicates that the request URI length is
longer than the allowed limit for the server.

415 Unsupported Media Type Indicates that the request format is not
supported by the server.

429 Too Many Requests Indicates that the client sent too many
requests within the time limit than it is
allowed to.

500 Internal Server Error Indicates that the request could not be
processed due to an unexpected error in
the server.

501 Not Implemented Indicates that the server does not support
the functionality required to fulfill the
request.

(continued)

Chapter 3 ■ Designing a RESTful API Interface

45

Resource Representation Design
A REST API resource entity representation is used to convey the state of the resource. The
message body of the request/response is used to convey the state of the resource entity.
The client sends the resource entity to the server in the request message payload of a
POST, PUT, or PATCH message. The server sends the resource entity state in the response
message payload for a GET, POST, PUT, or optionally, DELETE request.

A text-based format is normally used to represent the resource state. JSON and
XML are the most commonly used text formats for representing the state of the resource
entity. JSON is lightweight and provides a simple way to represent a resource. Due to
the seamless integration of JSON with the browser’s native runtime environment, JSON
is the preferred choice for data representation in the design of a REST API. XML, on the
other hand, is verbose, hard to parse, hard to read, and its data model is not compatible
with many programing languages. This makes JSON a preferred choice over XML for
representing the resource entity for a REST API. Many popular API providers have already
moved away from XML to the JSON format. However, if the API consumer base consists of
a large number of enterprise customers, you still have to support the XML data format for
your APIs.

As a general guideline, it is advisable to support JSON data format by default and
provide additional support for the XML format, if required. With support for both JSON
and XML formats, how does the client specify the preferred format for the response?
There are the following options:

•	 Use the ‘Accept’ header.

•	 Append .json or .xml extensions to the endpoint URL.

•	 Include a query parameter in the URL to specify the response
format.

Table 3-4.  (continued)

Status Code Reason Phrase Meaning

502 Bad Gateway Indicates that the server, while acting as
a gateway or proxy, received an invalid
response from the back-end server.

503 Service Unavailable Indicates that the server is currently
unable to process the request due to
temporary overloading or maintenance
of the server. Trying the request at a later
time might result in success.

504 Gateway Timeout Indicates that the server, while active as a
gateway or proxy, did not receive a timely
response from the back-end server.

Chapter 3 ■ Designing a RESTful API Interface

46

Of the three options, use of 'Accept' header to specify the response message format
is most preferred. The following are some of the basic best practices for the JSON format
representation of the resource entity.

•	 JSON should be in a well-formed format, with the variable names
and their values enclosed in double quotes.

•	 JSON names should use mixed lowercase and uppercase letters.
Special characters should be avoided whenever possible. JSON
names like fooName is preferred over foo-Name because it allows the
use of the cleaner dot notation for property access in JavaScript.

•	 The 'Content-Type' header in the message should be set to
application/json when a JSON format payload is included in
the message.

Hypermedia Controls and Metadata
HTTP headers in the request/response convey metadata about the messages and about
the resource entity contained in the message. HTTP specification defines a set of standard
headers that can be used for various purposes. The specification also allows extension
mechanisms to include custom HTTP headers. HTTP headers are classified under four
types.

•	 Entity headers: This type of header provides metainformation
about the entity body or resource in the message. Information
such as the allowed HTTP methods, the media type, size, and
location of the resource entity or cache expiration date-time, and
so forth, are some of the examples of Entity Header types.

•	 General headers: This type of header provides information
that can be applicable for both request and response messages.
Caching directive, connection information, message origination
date-time, and any message transformation applied on the whole
message, are some examples of General Header types.

•	 Client request headers: This type of header is included only in
the request message sent by the client or browser to the server.
Authorization information, user agent information, information
about the character set, encoding, or language that the client can
accept, are some examples of information provided by Client
Request headers.

•	 Server response headers: This type of header is included only
by the server in the response sent to the client. Information
about the age of the response generated by origin server, ETag
information for caching purposes, the duration for which the
server is unavailable for the requesting client, are some examples
of Server Response headers.

This section looks at the most commonly used HTTP headers and how they can be
used to design a better RESTful interface.

Chapter 3 ■ Designing a RESTful API Interface

47

Accept (Client Request Header)
The Accept header is used in the request message to specify the media types that are
acceptable by the client for the response. It is a mechanism for the client application or
browser to indicate to the server which MIME types it is expecting.

The client can specify a range of media types using an asterisk (*) or multiple media
types using comma-separated values. Media ranges can be overridden by specific media
ranges or specific media types. If more than one media range applies to a given type, the
most specific reference has precedence.

For example,

Accept: text/*, application/xhtml+xml, application/xml;q=0.9, */*

has the following precedence:

	 1.	 application/xml;q=0.9

	 2.	 application/xhtml+xml

	 3.	 text/*

	 4.	 */*

The client can specify its relative preference for a media type using an optional q
parameter. The following is an example:

Accept: audio/*; q=0.3, audio/basic

These examples indicate that audio/basic is preferred, but any audio type is also
acceptable if it is the best available after a 70% markdown in quality.

If no Accept header field is specified, then it is assumed that the client accepts all
media types. If an Accept header field is present but the server cannot send a response
that is acceptable according to the Accept field value, then the server should respond with
a HTTP status code of 406 Not Acceptable.

Accept-Charset (Client Request Header)
The Accept-Charset request header is used by the client to specify the character sets that
it understands and therefore can be included by the server in the response. As with the
Accept header, the client can specify multiple charsets in a comma-separated list.
A q value on a scale of 0 to 1 can also be included to specify the acceptable quality level
for non-preferred character sets.

If the client does not include an Accept-Charset header in the request, it is assumed
that any character set is acceptable. If a Accept-Charset header is present but the server
cannot send a response that is acceptable according to the Accept-Charset header, then
the server should send an error response with the 406 Not Acceptable HTTP status code,
though the sending of an unacceptable response is also allowed as per the HTTP specs.

The following is an example of Accept-Charset header:

Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

Chapter 3 ■ Designing a RESTful API Interface

48

Authorization (Client Request Header)
The Authorization header is used by the client to include authentication information
needed to access a server resource. If the server needs authentication and the
Authorization header is not present in the request or is having an incorrect value, the
server should send an error response with a 401 Unauthorized HTTP status code. The
server should also include the WWW-Authenticate header in the response, which indicates
the authentication scheme(s) required. The authentication schemes can be basic or
digest access.

The following is an example of Authorization header:

Authorization: BASIC Z3Vlc3Q6Z3Vlc3QxMjM=

Host (Client Request Header)
The Host request header specifies the server address and the port of the resource
requested. A Host without any port information implies the default port. The default port
is 80 for HTTP and 443 for HTTPS.

The following is an example of Host header:

Host: http://www.foo.com

Location (Server Response Header)
The Location response header is used by the server to redirect the recipient to a URI
other than the request URI for completion. This header is returned by the server in the
following two scenarios.

•	 When a new resource is created after the successful execution of
a POST or a PUT request. In this scenario, the Location header
contains the location information of the newly created resource
and the HTTP response status code should be 201 Created.

•	 When the resource has moved temporarily or permanently, or is
the result of a request execution is available at a different location.
In this scenario, the Location header contains the redirected URI
and the HTTP response status code should be 3xx. The Location
information is then used by the browser to load a different
web page, as specified in the header, thus helping in automatic
redirection.

The following is an example of Location header:

Location: http://www.foo.com/http/index.htm

Chapter 3 ■ Designing a RESTful API Interface

49

ETag (Server Response Header)
The ETag (entity tag) response header provides a mechanism for the server to send
information about the current state of the entity. It is an alphanumeric string that
uniquely identifies a specific version of the resource. If the resource has changed, the
ETag value changes. Hence, the ETag value can be compared to determine if the cached
resource entity on the client side matches that on the server.

It is a mechanism used for web cache validation that allows a client to make
conditional requests. It makes caches more efficient and saves bandwidth because the
server does not need to send the full response if the content has not changed.

The following is an example of ETag header:

ETag: "686897696a7c876b7e"

Cache-Control (General Header)
The Cache-Control general header field is specifies instructions on caching response
information by the client and/or any intermediary along the request/response chain.
Directives contained in this header provide information about the cache-ability of the
response. It specifies if the response can be cached or not. If yes, can it be cached in
public or private cache? It also specifies if the cache can be archived and stored. This
header also contains information about the maximum duration for which the response
can be cached.

The following is an example of Cache-Control header:

cache-control: private, max-age=300, no-cache

Content-Type (General Header)
The Content-Type header specifies the media type of the payload included in the
message.

The following is an example of Content-type header:

Content-Type: text/html; charset=ISO-8859-4

Header Naming Conventions
Earlier sections looked at the best practices for naming resources and URIs. For good API
design, even the HTTP headers should be named according to a convention. This section
looks at some of the recommended best practices for naming headers.

HTTP specifications provide names for all standard HTTP headers and their syntax.
It also provides extension mechanisms to include custom headers, if required. The
following conventions are recommended for naming custom HTTP headers.

Chapter 3 ■ Designing a RESTful API Interface

50

•	 Historically, X- has been used as a prefix for naming non-
standard custom headers. RFC 6648 has deprecated the use of
this convention because it causes more problems than it solves.
Hence, do not prefix custom header names with X- or similar
constructs.

•	 Name custom headers meaningfully and with the assumption
that all custom headers may become standardized, public,
commonly deployed, or usable across multiple implementations.

•	 Use hyphens in header names if required; for example, My-
Header-Name.

•	 Do not use spaces in header names.

Versioning
Versioning is one of the most important considerations for web API design. Regardless of
the approach followed, REST APIs should always be versioned. It helps to develop APIs in
an iterative approach.

There are multiple approaches for versioning an API. The following are some
questions to ask when thinking about API versioning.

•	 Which versioning approach should be used?

•	 When should a new version of the API be created?

•	 How and where to indicate the version of the API?

•	 How many versions should be maintained?

•	 How long should the older versions of the API be maintained?

•	 What are the deprecation mechanisms for older versions?

This and many other considerations and approaches for API versioning are
discussed later in this book.

Querying, Filtering, and Pagination
Enterprises use REST APIs to expose their data and services. The resource collection
returned by REST API may be huge. Transmitting the entire payload over the network is
heavy on the bandwidth. Additionally, processing an entire collection on the client side
would be processor intensive. Since a UI can display only a limited amount of data, this
becomes important from UI processing standpoint as well; for example, 20 results per
page. Hence, the need arises to be able to query, filter, and paginate the response. The
API should provide a mechanism for the consumer to specify the query parameters and
filter criteria. They should also be able to specify a range of data to be returned in the
response. The range can be in terms of the number of elements, a date and time range, or
in terms of offset and a limit.

Chapter 3 ■ Designing a RESTful API Interface

51

It is important to note that it is not mandatory to provide support for querying,
filtering, and pagination for all REST APIs. This is a resource-specific requirement and
by default is not required to be supported on all resources. Consider designing the API to
support filtration and pagination only if the number of entities in the resource collection
that can be returned by default is high. The API documentation should specify if these
complex functionalities are available for any specific service.

Limiting via Query-String Parameters
Filtering and pagination for an API is best implemented by designing the API interface
with offset and limit query-string parameters. The offset parameter indicates the
beginning item number in a collection and the limit specifies the maximum number of
items to return.

The following is an example:

GET http://www.foo.com/products?offset=0&limit=25

In this example, the offset value 0 and limit value 25 indicate to return the first 25
items in the list. If the number of items fetched from the back end is more than 25, only
the first 25 are returned. To retrieve the next set of items, the client has to make another
call with a changed value for offset (=25) and limit (=25). If the number of items in
the list is less than 25, all the items are returned in the response. This approach helps
implement pagination support in the API.

It is important to understand that offset and limit are query-string parameters
and are not dictated by any standards or specifications. Hence, different API providers
may implement the same concept by using different parameter names. start, count,
page, and rpp (records per page) are other examples of query-string parameters that can
be used to implement pagination. An API designer can name them anything to suite the
business context.

Filtering
Filtering is an approach to restrict the results returned in the response by specifying
additional search criteria. These search criteria must be met on the data returned in the
result. The filtering can become complex if the API has to support a complicated set of
search criteria. The filtering criteria is based on the resource attribute. The complexity
increases if filtering involves a complex combination of comparison operators. However,
filtration can be achieved by supporting simple criteria, such as starts-with or
contains, and so forth.

The filtering criteria can be specified by using the filter query-string containing
a delimiter-separated list of name/value pairs. The delimiters that have conventionally
worked are the vertical bar (|) to separate individual filter phrases and a double colon
(::) to separate the names and values. This approach supports a wide range of use cases
for filtering and also makes the filter criteria user-readable. The following is an example:

GET http://www.foo.com/customers?filter="name::matt|city::delhi"

Chapter 3 ■ Designing a RESTful API Interface

52

Note that the property names in the name/value pairs match the name of the
properties returned by the service in the payload. Wild cards can also be included in the
filter values by using the asterisk (*).

Filtering can be implemented for an API by using one of the following approaches.

•	 Map the filter criteria to the back-end database SQL queries and
implement filters at the database layer. This would retrieve the
data matching the criteria from the data store; the same can be
passed to the client with minimal messaging.

•	 Implement filter criteria in the service implementation layer. The
service accepts the filter criteria as inputs and applies them on the
data fetched from the data store. This may be required when the
search criteria is complex or requires some business logic to be
executed on the data set returned from the data store.

•	 Implement filter criteria on the API’s intermediary layer. In
the event that there is no change to the database or service
implementation layer, the filtering is done on the intermediary
API node that is generally introduced for creating and exposing
REST APIs. Implementation of the filter on the intermediary API
node might be complex due to the limited programming support
provided by these tools.

When deciding on which of these approaches to adopt, it is recommended to
implement filtering as close to the resource data store as possible.

The Richardson Maturity Model
The Richardson Maturity Model defines the levels to assess the maturity of a REST API
service. It defines the following four levels (0–3) based on services support for URI, HTTP
verbs, and hypermedia.

•	 Level 0: Swamp of POX

•	 Level 1: Resources

•	 Level 2: HTTP verbs

•	 Level 3: Hypermedia controls

Figure 3-1 shows the three core technologies with which Richardson evaluates
service maturity. Each layer builds on top of concepts and technologies of the layer
below. The higher up the stack an application sits, and the more it employs the
technologies in each layer, the more mature it is.

Chapter 3 ■ Designing a RESTful API Interface

53

Let’s look at each of these levels in detail.

Level 0: Swamp of POX (Plain Old XML)
This is the most basic level of maturity. At this level, the service is characterized as having
a single URI that acts as the entry point. HTTP is used as the transport system for remote
interactions. The payload content can be described in XML, JSON, YAML, key-value pairs,
or any format of your choice. Normally, the POST method is used for sending the request
to the server. SOAP and XML RPC are examples of services at Level 0 maturity. Figure 3-2
below shows a client making a request to an appointment service to get the availability of
slots for a given date and doctor. The search parameters are sent in plain old XML format
using POST request.

Level 3:
Hypermedia

Level 2:
Http Verbs

Level 1:
Resources

Level 0: Plain
Old XML

Figure 3-1.  Richardson’s Maturity Model for REST APIs

Chapter 3 ■ Designing a RESTful API Interface

54

Level 1: Resources
The first step toward RESTful maturity is the introduction of resources. At this level,
instead of having a single URI as an endpoint for all services, you start interacting with
individual resources through separate URIs. So instead of going through an endpoint
like http://www.foo.com/searchAppointmentService, you start using resource URIs
like http://www.foo.com/api/doctors/{doctorId}. Here doctors is a resource and
you get access to an individual doctor’s information by using {doctorId}. At this level,
you still use POST as the only HTTP method for all of your communication. Figure 3-3
below shows a client making a request to an appointment service to get the availability of
slots for a given date and doctor. The URL used to get the slot availability of the doctor is
resource oriented.

Figure 3-2.  Level 0- Plain Old XML way of communication

Chapter 3 ■ Designing a RESTful API Interface

55

Level 2: HTTP Verbs
At Level 0 and 1, the applications use the POST method for all communication. Level 2
maturity moves toward using the HTTP verbs more closely to how they are used in HTTP
itself. To fetch the slot availability of a particular doctor, it should be using the HTTP
verb GET at this level. As you’ve seen, the GET verb is safe because it is read-only and
does not make any significant changes to the state of the resource. Hence, you can use
the GET verb any number of times, in any order, and still get the same result every time,
unless the resource has been modified using a different method. If you have to create
a new appointment, you can use the POST method. If you want to update an existing
appointment, you may use the PUT method.

In addition to the use of HTTP verbs, Level 2 also introduces the use of HTTP
response codes to indicate the status of an operation on a resource. If a resource was
successfully created, the service returns with HTTP response code 201. If the operation on
a resource was successful, the 200 status code is used in the response. If the operation on
a resource resulted in an error, an appropriate 4xx or 5xx response code should be used in
the response. Figure 3-4 below shows a client making a request to an appointment service
to get the availability of slots for a given date and doctor. ‘GET’ Http verb is used to access
the resource oriented URL to get the appointment slots of the doctor. Http response code
200 OK is returned to indicate successful response.

Figure 3-3.  Level 1- Using resources for communication

Chapter 3 ■ Designing a RESTful API Interface

56

Level 3: Hypermedia Controls
This is the final level for REST maturity and it is where HATEOS enters the picture.
It addresses the question of what to do next. After receiving the response for a service
invocation, what are the next logical steps for the client? At a given node, what are the
possible branches for traversal in a tree? This helps the client to be more intelligent and
decide or prompt the user for the necessary possible actions.

At Level 3 maturity, the response of a REST service may contain a list of URIs. These
URIs are the resources that the client wants to act upon as the next course of action. So
rather than the client having to know where to post the next request, the hypermedia
controls in the response tells how to do it. Figure 3-5 below shows a client making a
request to an appointment service to get the availability of slots for a given date and
doctor. The response returned for the GET request contains hyperlinks for the next
possible actions that the client can do to book a slot.

Figure 3-4.  Level 2- Using resources and verb for communication

Chapter 3 ■ Designing a RESTful API Interface

57

An obvious advantage of hypermedia controls is that it allows the server to change its
URI scheme without breaking clients. It also helps client developers expose the protocol.
The link gives client developers a hint on what the next possible options are. It may not
provide all the information, but it at least gives developers a starting point to think about
more information for the API and to look for a similar URI in the API documentation.
Currently, there are no absolute standards on how to represent hypermedia controls. It
is up to the service implementation team to decide how to implement HATEOS in their
service.

As per Martin Fowler's article on Richardson Maturity Model, RMM provides a good
way to think of the different elements of a RESTful service, but it is not a definition of
levels of REST itself. Roy Fielding has made it clear that Level 3 RMM is a precondition of
REST.

Figure 3-5.  Using Resource, Verb and HATEOAS for communication

59© Brajesh De 2017
B. De, API Management, DOI 10.1007/978-1-4842-1305-6_4

CHAPTER 4

API Documentation

Documenting a REST API is important for its successful adoption. APIs expose data
and services that consumers want to use. An API should be designed with an interface
that the consumer can understand. API documentation is key to the app developers
comprehending the API. The documentation should help the developer to learn about
the API functionality and enable them to start using it easily. This chapter looks at the
aspects of documenting an API and some of the tools and technologies available for API
documentation, including RAML, Swagger, API Blueprint, and others.

The Importance of API Documentation
As an API provider or developer, you may master your API. You have inside knowledge
about its functionality, what it is supposed to do, how it is to be used, its security,
limitations, error scenarios, and so forth. As an API provider, you have gradually learned
everything about the API through various discussions, documentation, and references.
However, this is not the case for the consumers of your API. The app developer
community or API consumers look at the API’s interface and wonder what the API does,
how it should be used, what to expect when an error occurs, what security credentials to
use, how and where to get the security credentials to use the API, and so forth. Hence,
what is easy and simple to the API developer may not be intuitive to the API consumer.
Good API documentation can help bridge the gap and make the API successful. API
documentation communicates a vast amount of information about the API.

As enterprises move along in the digital transformation journey, there has been
exponential growth in public and private APIs. In this competitive world, it is very likely
that the data and services exposed by your API may also be exposed by another API
provider. If the API is being monetized, it becomes more important to make it successful
for your business. Good user-friendly API documentation is a key to its successful
adoption. An API document is like an entrance into your API and provides a warm
welcome to the API’s consumers.

The API documentation should

•	 Get users started quickly

•	 Include useful and relevant information

•	 Provide sample code

Chapter 4 ■ API Documentation

60

•	 Document a list of REST endpoints

•	 Document the message payload

•	 Provide Response status code and error messages

Audience for API Documentation
API documentation is used by various groups of people for various reasons. It is like
a user manual for a product. Like a user manual, API documentation should have a
quick-start guide, which quickly makes the first API call and lets consumers have a feel
of it. At the next level, it should document the API’s features, the resources and the APIs
to access them, and finally, the error conditions for troubleshooting. Hence, the API
documentation can be used primarily by the following types of audiences.

•	 CTO: Evaluates similar and competing APIs from a business,
technology, and monetization perspective.

•	 App or integration architect: Explores the API to match the
requirements for building an app or an integration solution.

•	 App developer: Wants to get started using the API with a quick-start
guide and a detailed tutorial. Sample SDKs and API calls in the API
documentation is of immense use to an app developer.

•	 IT support specialist: Supports the app and is interested in the
error and troubleshooting information for debugging any issues
with the app.

Model for API Documentation
A good API document communicates all information about the usage of the API— for
both humans and machines. The API document should provide all necessary information
to app developers or API consumers in a human-readable format. The documentation
should help them assess its suitability for use in their client app. It should provide
information about its licensing policy and usage requirements-input and output
parameters, message format, error messages, and more. Similarly, the API interface
should be documented such that its interface can be parsed by a machine to generate
client stubs and server-side skeleton code that can be further developed. To make API
documentation effective, it should include the following aspects about the API:

•	 Title

•	 Endpoint

•	 Method

•	 URL parameters

•	 Message payload

Chapter 4 ■ API Documentation

61

•	 Header parameters

•	 Response code

•	 Error code

•	 A sample request and response

•	 Tutorials and walkthrough

•	 Service-level agreement

Figure 4-1 shows an example of API documentation using Swagger.

Title
The title should provide the name of the API, which can be used for its identification.

Figure 4-1.  API documentation using Swagger

Chapter 4 ■ API Documentation

62

Endpoint
The endpoint is the entry point for the API. It defines the URL that clients need to use to
invoke the API.

Method
The method defines the HTTP verbs used to access the API. GET, POST, PUT, and DELETE
are the most common HTTP verbs used in a REST API. The client should specify the
methods along with the URI to access the API. If an API supports multiple methods to be
used for an URI, it should be specified in the API document as separate entities, as shown
in Figure 4-1.

URL Parameters
The URL parameters define the parameter names and their format, which are used in
the API call as a query string. The documentation should clearly state the purpose of
each parameter, as well as which parameters are mandatory and which are optional. Any
requirements for URL encode should be documented.

Message Payload
The message payload should specify the structure and format of the request and response
message. JSON and XML are the most common formats used for a REST API. Other
formats can be used as well. The message structure should specify the schema of the
message payload. Any data constraints in the request payload should be documented. It
is a good practice to include a table that provides the name, data type, description, and
remarks, if any. Figure 4-2 shows a snippet of a Swagger format specification of an API,
with the message format for a request and response payload.

