Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE
 (AUTONOMOUS)
 COIMBATORE-2241049
 Accredited by NAAC(Cycle III) with "A+" Grade
 Recognised by UGC, Approved by AICTE, New Delhi and
 Affiliated to Bharathiar University, Coimbatore.

 DEPARTMENT OF COMPUTER SCIENCE

 DEPARTMENT OF COMPUTER SCIENCE}

Computer System Architecture

I YEAR - I SEM
Unit II - Digital Logic Circuit

Product of Sums and Sum of Products

The Product of Sum(PoS) expression comes from the fact that two or more Sum (OR) are product (AND) together. Ex: $(x+y+z)\left(x^{\prime}+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)$

The Sum of Product (SOP) expression comes from the fact that two or more products (AND) are summed (OR) together. Ex: (xyz) $+\left(x^{\prime} y^{\prime} z^{\prime}\right)+\left(x^{\prime} y^{\prime} z\right)$

Min Terms

$$
\begin{aligned}
& x^{\prime} y^{\prime} z^{\prime} \\
& x^{\prime} y^{\prime} z \\
& x^{\prime} y ~ z ' \\
& x^{\prime} y ~ z \\
& \text { x y'z' } \\
& \text { x y'z } \\
& \text { x y z' } \\
& \text { x y z }
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}+y^{\prime}+z^{\prime} \\
& x^{\prime}+y^{\prime}+z \\
& x^{\prime}+y+z \\
& x^{\prime}+y+z \\
& x+y^{\prime}+z^{\prime} \\
& x+y^{\prime}+z \\
& x+y+z^{\prime} \\
& x+y+z
\end{aligned}
$$

Max Terms

Karnaugh Map

The K-map is a systematic way of simplifying Boolean expressions. With the help of the K-map method, we can find the simplest POS and SOP expression, which is known as the minimum expression.

2 Variable K-map

3 Variable K-map

4 Variable K-map

Karnaugh Map

Pair

A pair can be formed by grouping two horizontal or two vertical ' 1 '. A pair of '1' reduces 1 variable.

Quad

A quad is formed with four adjacent 1's either horizontally, vertically or two 1's horizontal and two 1's vertically adjacent.
A quad reduces two variable.

Octet

An octet is a group of eight adjacent 1's.
An octet reduces three variable from a Boolean equation.

Karnaugh Maps - Rules of Simplification

Groups may not include any cell
containing a zero

Each group should be as large as possible.

(Note that no Boolean laws broken, but not sufficiently minimal)

Groups may be horizontal or vertical, but not diagonal.

Groups may overlap

Groups may wrap around the table.

There should be as few groups as possible

RIGHT

Boolean Expression Simplification using K-Map

Example $1: Y=\bar{A} \bar{B}+\bar{A} B+A B$

Simplified Expression : $Y=\bar{A}+B$

Example 2: $Y=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A B C$

Simplified Expression : $Y=A+\bar{C}$

Boolean Expression Simplification using K-Map

Example $3: Y=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+\bar{A} B C D+A \bar{B} \bar{C} \bar{D}+A \bar{B} C \bar{D}$ $+A B C \bar{D}+A B C D$

$A B)^{C L}$	00	01	11	10
00	1.	0	0	${ }_{2}^{1}$
01	O_{4}	$1{ }_{5}$	$1{ }_{7}$	0
11	0_{12}	1	$1{ }_{15}$	0_{14}
10	${ }^{1}$	0^{0}	${ }^{11}$	$\frac{1}{10}$

Simplified Expression : $Y=B D+\bar{B} \bar{D}$

K-Map with "Don't Care" conditions

The "Don't Care" conditions allow us to replace the empty cell of a K-map to form a grouping of the variables which is larger than that of forming groups without don't care. While forming groups of cells, we can consider a "Don't Care" cell as 1 or 0 or we can also ignore that cell. Therefore, the "Don't Care" condition can help us to form a larger group of cells.

Example: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{m}(1,2,6,7,8,13,14,15)+\mathrm{d}(0,3,5,12)$

$$
\mathrm{F}=\mathrm{AC}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AB}
$$

Thank You

