

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS) COIMBATORE-2241049 Accredited by NAAC(Cycle III) with "A+" Grade Recognised by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore.

DEPARTMENT OF COMPUTER SCIENCE

Computer System Architecture

I YEAR - I SEM

Unit II – Digital Logic Circuit

Product of Sums and Sum of Products

The *Product of Sum*(PoS) expression comes from the fact that two or more Sum (OR) are product (AND) together. Ex: (x+y+z)(x'+y+z')(x+y'+z)

The *Sum of Product* (SOP) expression comes from the fact that two or more products (AND) are summed (OR) together. Ex: (xyz) + (x'y'z') + (x'y'z)

	Min Terms		Max Terms
x'y'z'		x'+y'+z'	
x'y'z		x'+y'+z	
x'y z'		x'+y+ z'	
x'y z		x'+y+ z	
x y'z'		x +y'+z'	
x y'z		x+y'+z	
x y z'		x +y+ z'	
хуz		x +y+ z	

Karnaugh Map

The **K-map** is a systematic way of simplifying Boolean expressions. With the help of the K-map method, we can find the simplest POS and SOP expression, which is known as the minimum expression.

2 Variable K-map

3 Variable K-map

4 Variable K-map

BC	00	01	11	10
0	m ₀	m ₁	m ₃	m ₂
1	m ₄	m ₅	m 7	m ₆

Pair

A pair can be formed by grouping two horizontal or two vertical '1'. A pair of '1' reduces 1 variable.

Quad

A quad is formed with four adjacent 1's either horizontally, vertically or two 1's horizontal and two 1's vertically adjacent. A quad reduces two variable.

Octet

An octet is a group of eight adjacent 1's. An octet reduces three variable from a Boolean equation.

ͺA

B

ÅB C

00

0

Karnaugh Maps - Rules of Simplification

Rightmost cell

SNS DESIGN THINKERS/ Dr.SNSRCAS / CS / CSA/ Dr.B.Murugesakumar

01

1

-0

11

1

wrong \times

10

1

1

Boolean Expression Simplification using K-Map

Example 1: $Y = \overline{A} \ \overline{B} + \overline{A}B + AB$

 $Example \; 2: Y = \overline{A} \; \overline{B} \; \overline{C} + \overline{A} \overline{B} \; \overline{C} + A \overline{B} \; \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$

Simplified Expression : $Y = \overline{A} + B$

Simplified Expression : $Y = A + \overline{C}$

Boolean Expression Simplification using K-Map

Example 3: $Y = \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} \ \overline{C} \ \overline{C} \ \overline{C} \ \overline{C} \ \overline{D} \ \overline{C} \$ $+ABC\overline{D}+ABCD$ AB

Simplified Expression : $Y = BD + \overline{B} \ \overline{D}$

K-Map with "Don't Care" conditions

The "Don't Care" conditions allow us to replace the empty cell of a K-map to form a grouping of the variables which is larger than that of forming groups without don't care. While forming groups of cells, we can consider a "Don't Care" cell as 1 or 0 or we can also ignore that cell. Therefore, the "Don't Care" condition can help us to form a larger group of cells.

Example: F(A, B, C, D) = m(1, 2, 6, 7, 8, 13, 14, 15) + d(0, 3, 5, 12)

F = AC'D' + A'D + A'C + AB

Thank You