
Substitution

Variables are place holders so we must have some means of replacing them with more concrete

information. On the syntactic side, we often need to replace a leaf node x by the parse tree of an

entire term t. In substituting t for x we have to leave untouched the bound leaves x since they are

in the scope of some ∃x or ∀x, i.e. they stand for some unspecified or all values respectively.

Given a variable x,aterm t and a formula φ we define φ[t/x] to be the formula obtained by replacing

each free occurrence of variable x in φ with t.

Substitutions are easily understood by looking at some examples. Let f be a function symbol with

two arguments and φ the formula with the parse tree. This is true because all occurrences of x are

bound in φ, so none of them gets substituted.

Note that the bound x leaves are unaffected by this operation. You can see that the process of

substitution is straightforward, but requires that it be applied only to the free occurrences of the

variable to be substituted. A word on notation: in writing φ[t/x], we really mean this to be the

formula obtained by performing the operation [t/x] on φ. Strictly speaking, the chain of symbols

φ[t/x] is not a logical formula, but its result will be a formula, provided that φ was one in the first

place.

Unfortunately, substitutions can give rise to undesired side effects. In performing a substitution

φ[t/x], the term t may contain a variable y, where free occurrences of x in φ are under the scope of

∃y or ∀y in φ. By carrying out this substitution φ[t/x], the value y, which might have been fixed

by a concrete context, gets caught in the scope of ∃y or ∀y. This binding capture overrides the

context specification of the concrete value of y, for it will now stand for ‘some unspecified’ or ‘all

,’ respectively. Such undesired variable captures are to be avoided at all costs.

