
Dr. SNS RAJALAKSHMI COLLEGE OF ARTS AND
SCIENCE

(AUTONOMOUS)

Accredited by NAAC (Cycle- III) with ‘A+’ Grade

DEPARTMENT OF B.Sc CS (Gcd)

K.Sangeetha_GCD

23UCU401 – PROGRAMMING IN C
UNIT- V

Unit 5 :

Why Use Structures – Array of Structures - Additional Features of Structures Uses of Structures. File Input/Output: File Operations - Closing the

File - Counting Characters, Tabs, Spaces - A File-copy Program - File Opening Modes. Miscellaneous Features: Enumerated Data Type - Renaming

Data Types with typedef -Typecasting - Bit Fields – Unions.

Subject : Programming in C

Department : GCD

Faculty : Mrs.K.Sangeetha

1. Why Use Structures

● Structures allow you to group related variables into a single entity.

● They enhance code organization and readability.

Example:

struct Point {

int x;

int y;

};

struct Point p;

p.x = 10;

p.y = 5;

Explanation:

● The structure Point groups x and y coordinates together.

● Creating a variable p of this structure type allows us to access both coordinates easily.

2. Array of Structures

● You can create arrays of structures to manage multiple records of the same structure type.

● This is useful for tasks like managing data for multiple students.

Example:

struct Student {

char name[50];

int age;

};

struct Student students[3];

students[0].age = 20;

students[1].age = 22;

students[2].age = 19;

Explanation:

● The array students contains structures to store information about multiple students.

● Each student's age is assigned to the age field.

3. Additional Features of Structures Uses of Structures

● Structures can be nested (a structure within a structure) for representing complex data hierarchies.

● They are used extensively in applications like databases, file formats, and data exchange between programs.

struct Address {

char street[50];

char city[30];

char state[20];

};

struct Person {

char name[50];

struct Address address;

};

Explanation:

● The Person structure is nested within the Address structure, allowing you to represent a person's name

and address in a hierarchical manner.

4. File Input/Output: File Operations

● File operations in C are essential for reading from and writing to external files.

● The basic file operations include opening, reading, writing, and closing files.

Example: Reading from a File

FILE *file = fopen("data.txt", "r");

char buffer[100];

if (file != NULL) {

while (fgets(buffer, sizeof(buffer), file) != NULL) {

printf("%s", buffer);

}

fclose(file);

}

Explanation:

● The program opens a file named "data.txt" in read mode, reads its content line by line, and prints it.

5. Closing the File

● Properly closing files is essential to release system resources and ensure data integrity.

● Use fclose() to close a file after reading or writing.

6. Counting Characters

● When reading characters from a file, you may need to count the number of characters, words, or lines.

● This is useful for text analysis and processing.

Example: Counting Characters in a File

FILE *file = fopen("data.txt", "r");

int count = 0;

if (file != NULL) {

int ch;

while ((ch = fgetc(file)) != EOF) {

if (ch != ' ' && ch != '\n' && ch != '\t') {

count++;

}

}

fclose(file);

}

Explanation:

● The program counts the number of characters in a file while ignoring spaces, tabs, and line breaks.

7. Tabs, Spaces

● When processing text files, you may encounter tabs, spaces, and newline characters.

● You can write programs to count, replace, or manipulate these characters in text data.

Example: Replacing Tabs with Spaces

FILE *inputFile = fopen("input.txt", "r");

FILE *outputFile = fopen("output.txt", "w");

if (inputFile != NULL && outputFile != NULL) {

int ch;

while ((ch = fgetc(inputFile)) != EOF) {

if (ch == '\t') {

fprintf(outputFile, " "); // Replace tab with 4 spaces

} else {

fputc(ch, outputFile);

}

}

fclose(inputFile);

fclose(outputFile);

}

Explanation:

● The program reads a file, replaces tabs with spaces, and writes the modified content to another file.

8. A File-copy Program

● Writing a file-copy program is a common exercise in file operations.

● It involves opening a source file, reading its content, and writing it to a destination file.

Example: File Copy Program

FILE *source = fopen("source.txt", "r");

FILE *destination = fopen("destination.txt", "w");

if (source != NULL && destination != NULL) {

int ch;

while ((ch = fgetc(source)) != EOF) {

fputc(ch, destination);

}

fclose(source);

fclose(destination

Explanation:

● The program reads from a source file and writes its content to a destination file.

9. File Opening Modes

● File opening modes determine how a file can be accessed and modified.

● Understanding file modes is crucial to control file access and prevent data loss.

● Common file modes include:

● "r": Read

● "w": Write

● "a": Append

● "rb": Read as binary

● "wb": Write as binary

10. Miscellaneous Features: Enumerated Data Type -

Enumerated data types allow you to define a set of named integer constants. - They make code more readable and
self-documenting when dealing with specific values.

Example: Defining an Enumeration

```c

enum Weekdays {

MON, TUE, WED, THU, FRI

};

enum Weekdays today = WED;

```

Explanation:

- The `enum` defines named constants for weekdays.

- We assign the value `WED` to the variable `today`.

11. Renaming Data Types with typedef -

The typedef keyword is used to create new data type names. - It makes the code more expressive and can help abstract data types
for better portability.

Example: Typedef for Data Type

```c

typedef unsigned int uint; // Define 'uint' as an alias for 'unsigned int'

uint x = 42;

```

Explanation:

- The `typedef` statement creates an alias `uint` for the data type `unsigned int`.

- This improves code readability and portability.

12. Typecasting

Typecasting is the conversion of one data type to another. - It's useful when you need to perform
operations with data of different types.

Example: Typecasting

```c

double pi = 3.14159;

int piInt = (int)pi; // Typecast 'pi' to an integer

```

Explanation:

- Typecasting `pi` to an integer truncates the decimal part and assigns it to `piInt`.

13. Bit Fields

Bit fields are used to control the size of data fields within a structure. - They are often used in embedded systems programming and
data compression.

Example: Bit Fields

```c

struct Flags {

unsigned int flag1 : 1;

unsigned int flag2 : 1;

unsigned int flag3 : 1;

};

struct Flags status;

status.flag1 = 1;

```

Explanation:

- The structure `Flags` uses bit fields to represent individual flags with a size of 1 bit each.

- This is space-efficient for storing binary flags.

14. Unions

Unions are similar to structures but share the same memory location for their members. - They are useful when you want to
represent data that can be one of several types at a given time.

Example: Union for Multiple Data Types

```c

union Data {

int integer;

double floating;

};

union Data value;

value.integer = 42;

```

Explanation:

- The `Data` union can store either an integer or a floating-point value.

- This is useful when you need to handle different types of data in the same memory space.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

