
Dr. SNS RAJALAKSHMI COLLEGE OF ARTS AND
SCIENCE

(AUTONOMOUS)

Accredited by NAAC (Cycle- III) with ‘A+’ Grade

DEPARTMENT OF B.Sc CS (Gcd)

K.Sangeetha_GCD

23UCU401 – PROGRAMMING IN C
UNIT- IV

Unit 4 :

Features of C Preprocessor - Macro Expansion - File Inclusion - Conditional Compilation - #if and #elif Directives. Arrays: What are Arrays - More

on Arrays - Pointers and Arrays - Two Dimensional Arrays - Array of Pointers - Three Dimensional Array.

Subject : Programming in C

Department : GCD

Faculty : Mrs.K.Sangeetha

1. Features of C Preprocessor

● The C preprocessor is a tool that processes your source code before compilation.

It's used for tasks like including header files, macro expansion, and conditional

compilation.

Some features of the C preprocessor include:

● Macro expansion: Allows you to define and use macros in your code.

● File inclusion: Provides the ability to include other source code files.

● Conditional compilation: Allows you to compile or exclude code based on

conditions.

● Header files: Used to include declarations and function prototypes.

2. Macro Expansion

● Macros are a way to create symbolic constants or short functions in C. They are expanded during preprocessing.

Example:
#define PI 3.14159265

#define SQUARE(x) (x * x)

float area = PI * SQUARE(2);

Explanation:

● The #define directive creates macros. In the example, PI is a constant, and SQUARE(x) is a simple function-like macro.

● During preprocessing, PI is replaced with 3.14159265, and SQUARE(2) becomes (2 * 2), resulting in the calculation of the

area.

3. File Inclusion

● File inclusion is a way to add external code files to your program using #include directives.

Example:

#include <stdio.h>

#include "myheader.h"

int main() {

printf("Hello, world!\n");

myFunction();

return 0;

}

Explanation:

● #include <stdio.h> includes the standard input/output library.

● #include "myheader.h" includes a custom header file called myheader.h, which contains declarations and functions used

in the program.

4. Conditional Compilation

● Conditional compilation allows you to include or exclude parts of your code based on defined conditions using #if, #ifdef,

and #ifndef directives.

Example:

#define DEBUG

#ifdef DEBUG

printf("Debug mode is

enabled.\n");

#endif

Explanation:

● If the DEBUG macro is defined, the code within the #ifdef DEBUG block is included in the compilation.

5. #if and #elif Directives

● The #if and #elif directives are used for conditional compilation with numerical expressions.

Example:

#define NUM 42

#if NUM > 50

printf("NUM is greater than 50.\n");

#elif NUM < 50

printf("NUM is less than 50.\n");

#else

printf("NUM is equal to 50.\n");

#endif

Explanation:

● The #if directive allows you to evaluate numerical expressions for conditional compilation.

6. Arrays: What are Arrays

● Arrays are a fundamental data structure in C that allow you to store multiple values of the same data type in a

single variable.

Example:

int numbers[5] = {1, 2, 3, 4, 5};

Explanation:

● numbers is an array that can store 5 integers.

● Array elements can be accessed using indexes, e.g., numbers[0] is the first element.

7. More on Arrays

● Arrays are indexed starting from 0.

● You can use loops to iterate through array elements.

Example:

for (int i = 0; i < 5; i++) {

printf("Element %d: %d\n", i, numbers[i]);

}

Explanation:

● This loop iterates through the numbers array and prints each element along with its index.

8. Pointers and Arrays

● Pointers and arrays are closely related. An array name can be thought of as a constant pointer to the first element of the

array.

Example:

int arr[3] = {10, 20, 30};

int* ptr = arr; // 'ptr' points to the first element of 'arr'

Explanation:

● ptr can be used to access elements of arr. *ptr is equivalent to arr[0].

9. Two Dimensional Arrays

● Two-dimensional arrays allow you to represent tables or matrices with rows and columns.

Example:

int matrix[3][3] = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9}

};

Explanation:

● matrix is a 3x3 two-dimensional array, and elements can be accessed using two indices, e.g., matrix[0][1] is 2.

In this example, we'll create a simple 3x3 matrix and perform some basic operations on it:

#include <stdio.h>

int main() {

int matrix[3][3] = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9}

};

// Display the matrix

printf("Matrix:\n");

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {

printf("%d\t", matrix[i][j]);

}

printf("\n");

}

// Calculate the sum of all elements

int sum = 0;

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {

sum += matrix[i][j];

}

}

printf("Sum of all elements: %d\n", sum);

return 0;

}

Explanation:

● We declare a 3x3 matrix named matrix and initialize it with values.

● We use nested loops to display the matrix and calculate the sum of its elements.

● The loops iterate through the rows and columns of the matrix to access and process each element.

10. Array of Pointers

● An array of pointers allows you to create arrays of data where each element is a pointer to data of a different type.

Example:
int* arr[3]; // An array of integer pointers

Explanation:

● arr is an array of integer pointers, and each element can point to an integer value.

11. Three Dimensional Array

● Three-dimensional arrays are used to represent data structures with three levels of indexing.

Example:

int cube[2][3][4];

Explanation:

● cube is a three-dimensional array with dimensions 2x3x4.

● Accessing elements requires three indices, e.g., cube[1][2][3] accesses a specific element.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

