
Dr. SNS RAJALAKSHMI COLLEGE OF ARTS AND
SCIENCE

(AUTONOMOUS)

Accredited by NAAC (Cycle- III) with ‘A+’ Grade

DEPARTMENT OF B.Sc CS (Gcd)

K.Sangeetha_GCD

23UCU401 – PROGRAMMING IN C
UNIT- III

Unit 3 :

What is a Function - Passing Values between Functions - Scope Rule of Functions - Calling Convention - Function Declaration and Prototypes -

Call by Value and Call by Reference - An Introduction to Pointers -Pointer Notation -Back to Function Calls - Recursion - Recursion and Stack.

Subject : Programming in C

Department : GCD

Faculty : Mrs.K.Sangeetha

1. What is a Function

● A function is a self-contained block of code that performs a specific task.

● Functions make your code modular and easier to maintain.

Example:

// A simple function that adds two

numbers

int add(int a, int b) {

return a + b;

}

Explanation:

● The add function takes two integers as input, adds them, and returns the result.

● This function can be called from other parts of the program to perform addition.

2.Passing Values between Functions

● You can pass data to a function as arguments or parameters.

● Functions can return values back to the calling code.

Example:

// Function that calculates the square of a number

int square(int x) {

return x * x;

}

int main() {

int num = 5;

int result = square(num);

// 'result' now holds the square of 'num'

return 0;

}

Explanation:

● In the main function, we pass the value of num to the square function.

● The square function calculates the square and returns the result to the main function.

3.Scope Rule of Functions

● Scope defines where a variable is accessible.

● Variables declared within a function have local scope, while those declared outside have global scope.

Example:

int globalVar = 10; // Global variable

int main() {

int localVar = 5; // Local variable

return 0;

}

Explanation:

● globalVar is accessible throughout the program.

● localVar is only accessible within the main function.

4.Calling Convention

A calling convention in C is a set of rules that define how a function is called and how arguments are passed to and returned

from the function. The calling convention specifies the following:

● How the function arguments are pushed onto the stack

● How the return value is returned to the caller

● How the function registers are saved and restored

#include <stdio.h>

int my_function(int a, int b) {

return a + b;

}

int main() {

int result = my_function(1, 2);

printf("The result is %d.\n", result);

return 0;

}

5.Function Declaration and Prototypes

● Function prototypes are declarations that specify the function's name, return type, and parameters.

● Prototypes help the compiler verify function calls.

// Function prototype

int add(int a, int b);

int main() {

int result = add(3, 4);

return 0;

}

// Function definition

int add(int a, int b) {

return a + b;

}

Explanation:

● The function prototype int add(int a, int b); informs the compiler about the add function's signature before it's

defined.

● This allows the main function to call add even before its actual implementation.

6. Call by Value and Call by Reference

● Call by Value passes a copy of the argument to the function, so changes don't affect the original.

● Call by Reference passes a reference or address, allowing changes to affect the original data.

Example of Call by Value:

void modifyValue(int x) {

x = x * 2;

}

int main() {

int num = 5;

modifyValue(num);

// 'num' remains 5; no change occurred

return 0;

}

Example of Call by Reference (using pointers):

void modifyValue(int* x) {

*x = *x * 2;

}

int main() {

int num = 5;

modifyValue(&num);

// 'num' is now 10; it was changed within the function

return 0;

}

Explanation:

● In Call by Value, the function receives a copy of the argument, so any changes are local to the function.

● In Call by Reference, the function receives the address of the variable, allowing changes to affect the original data.

7. An Introduction to Pointers

● Pointers are variables that store memory addresses.

● They are used to manipulate data indirectly and can be powerful but require careful handling.

Example:
int num = 10;

int* ptr = # // 'ptr' stores the address of 'num'

*ptr = 20; // Changes the value of 'num' through the pointer

Explanation:

● ptr is a pointer that stores the address of the num variable.

● *ptr is used to access and modify the value of num indirectly through the pointer.

8. Pointer Notation

● Pointer notation allows you to access data through pointers.

● * is used to dereference a pointer and obtain the value it points to.

int num = 5;

int* ptr = #

int value = *ptr; // 'value' now holds the value of 'num'

Explanation:

● *ptr retrieves the value that ptr points to, which is the value of num.

9. Back to Function Calls

● When a function is called, control jumps to the function, and local variables are created.

● When the function returns, control and data return to the calling code.

Explanation:

● When a function is called, a new stack frame is created with local variables.

● When the function returns, the stack frame is removed, and control returns to the calling

code.

10. Recursion - Recursion and Stack

● Recursion is a technique where a function calls itself.

● Each recursive call uses its own stack frame, and the stack keeps track of multiple function calls.

Example:

int factorial(int n) {

if (n == 0)

return 1;

else

return n * factorial(n - 1);

}

Explanation:

● The factorial function calculates the factorial of a number using recursion.

● Each recursive call creates a new stack frame, and the results are combined to compute the final result.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

