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➢ Overview of AI application areas. AI as Representation and search 

 

✓ THE PREDICATE CALCULUS: 

• In propositional calculus, each atomic symbol (P, Q, etc.) denotes a single 

proposition. There is no way to access the components of an individual assertion. 

Predicate calculus provides this ability. For example, instead of letting a single 

propositional symbol, P, denote the entire sentence “it rained on Tuesday,” we can 

create a predicate weather that describes a relationship between a date and the 

weather: weather (tuesday, rain).  

• Through inference rules we can manipulate predicate calculus expressions, 

accessing their individual components and inferring new sentences. 

• Predicate calculus also allows expressions to contain variables. Variables let us 

create general assertions about classes of entities. For example, we could state that 

for all values of X, where X is a day of the week, the statement weather (X, rain) 

is true; i.e., it rains every day. As we did with the propositional calculus, we will 

first define the syntax of the language and then discuss its semantics. 

✓ The Syntax of Predicates and Sentences 

 

• Before defining the syntax of correct expressions in the predicate calculus, we 

define an alphabet and grammar for creating the symbols of the language. This 

corresponds to the lexical aspect of a programming language definition.  

• Predicate calculus symbols, like the tokens in a programming language, are 

irreducible syntactic elements: they cannot be broken into their component parts 

by the operations of the language. 

• In our presentation we represent predicate calculus symbols as strings of letters 

and digits beginning with a letter. Blanks and nonalphanumeric characters cannot 

appear within the string, although the underscore, _, may be used to improve 

readability. 



 

D E F I N I T I O N 

PREDICATE CALCULUS SYMBOLS 

The alphabet that makes up the symbols of the predicate calculus consists of: 

1. The set of letters, both upper- and lowercase, of the English alphabet. 

2. The set of digits, 0, 1, , 9. 

3. The underscore, _. 

Symbols in the predicate calculus begin with a letter and are followed by any 

sequence of these legal characters. 

Legitimate characters in the alphabet of predicate calculus symbols include 

a R 6 9 p _ z 

Examples of characters not in the alphabet include 

# % @ / & 

Legitimate predicate calculus symbols include 

George fire3 tom_and_jerry bill XXXX friends_of 

Examples of strings that are not legal symbols are 

3jack no blanks allowed ab%cd ***71 duck!!! 

 

• Symbols, are used to denote objects, properties, or relations in a world of 

discourse. As with most programming languages, the use of “words” that 

suggest the symbol’s intended meaning assists us in understanding program 

code. Thus, even though l (g, k) and likes (george, kate) are formally equivalent 

(i.e., they have the same structure), the second can be of great help (for human 

readers) in indicating what relationship the expression represents.  

• It must be stressed that these descriptive names are intended solely to improve 

the readability of expressions. The only “meaning” that predicate calculus 

expressions have is given through their formal semantics. 

 



• Parentheses “()”, commas “,”, and periods “.” are used solely to construct well- 

formed expressions and do not denote objects or relations in the world. These 

are called improper symbols. 

 

• Predicate calculus symbols may represent either variables, constants, 

functions, or predicates. Constant’s name specific objects or properties in the 

world. Constant symbols must begin with a lowercase letter. Thus george, tree, 

tall, and blue are examples of well-formed constant symbols. The constants 

true and false are reserved as truth symbols. Variable symbols are used to 

designate general classes of objects or properties in the world. Variables are 

represented by symbols beginning with an uppercase letter.  

• ThusGeorge, BILL, and KAte are legal variables, whereas geORGE and bill 

are not. Predicate calculus also allows functions on objects in the world of 

discourse. Func- tion symbols (like constants) begin with a lowercase letter. 

Functions denote a mapping of one or more elements in a set (called the domain 

of the function) into a unique element of a second set (the range of the 

function).  

• Elements of the domain and range are objects in the world of discourse. In 

addition to common arithmetic functions such as addition and multiplication, 

functions may define mappings between nonnumeric domains. 

• Note that our definition of predicate calculus symbols does not include 

numbers or arithmetic operators. The number system is not included in the 

predicate calculus primi- tives; instead, it is defined axiomatically using “pure” 

predicate calculus as a basis (Manna and Waldinger 1985). While the 

particulars of this derivation are of theoretical interest, they are less important 

to the use of predicate calculus as an AI representation language. For 

convenience, we assume this derivation and include arithmetic in the language. 

• Every function symbol has an associated arity, indicating the number of 

elements in the domain mapped onto each element of the range.  

• Thus, father could denote a function of arity 1 that maps people onto their 

(unique) male parent. plus, could be a function of arity 2 that maps two 

numbers onto their arithmetic sum. 

• A function expression is a function symbol followed by its arguments. The 



arguments are elements from the domain of the function; the number of 

arguments is equal to thearity of the function. The arguments are enclosed in 

parentheses and separated by com- mas.  

 For example, 

 

f(X,Y) 

father(david) 

price(bananas) 

 

are all well-formed function expressions. 

 

D E F I N I T I O N 

SYMBOLS and TERMS 

Predicate calculus symbols include: 

1. Truth symbols true and false (these are reserved symbols). 

2. Constant symbols are symbol expressions having the first character lowercase. 

3. Variable symbols are symbol expressions beginning with an uppercase character. 

4. Function symbols are symbol expressions having the first character lowercase. 

Functions have an attached arity indicating the number of elements of the domain 

mapped onto each element of the range. 

A function expression consists of a function constant of arity n, followed by n terms, 

t1, t2, tn, enclosed in parentheses and separated by commas. 

A predicate calculus term is either a constant, variable, or function expression. 

 

Thus, a predicate calculus term may be used to denote objects and properties in a 

problem domain. Examples of terms are: 

cat times (2,3) X 

blue mother(sarah) kate 



D E F I N I T I O N 

➢ PREDICATES and ATOMIC SENTENCES 

• Predicate symbols are symbols beginning with a lowercase letter. 

• Predicates have an associated positive integer referred to as the arity or 

“argument number” for the predicate. Predicates with the same name but 

different arities are considered distinct. 

An atomic sentence is a predicate constant of arity n, followed by n terms, 

t1, t2, tn, enclosed in parentheses and separated by commas. 

The truth values, true and false, are also atomic sentences. 

 

Atomic sentences are also called atomic expressions, atoms, or propositions. 

• We may combine atomic sentences using logical operators to form sentences 

in the predicate calculus. These are the same logical connectives used in 

propositional calculus: ∧, ∨, ¬, →, and ≡. 

• The universal quantifier, ∀, indicates that the sentence is true for all values of 

the variable. In the example, ∀ X likes (X, ice_cream) is true for all values in 

the domain of the defini- tion of X. The existential quantifier, ∃, indicates that 

the sentence is true for at least one value in the domain. ∃Y friends (Y, peter) 

is true if there is at least one object, indicated by Y that is a friend of peter. 

Quantifiers are discussed in more Sentences in the predicate calculus are 

defined inductively. 

D E F I N I T I O N 

➢ PREDICATE CALCULUS SENTENCES 

Every atomic sentence is a sentence. 

1. If s is a sentence, then so is its negation, ¬ s. 

2. If s1 and s2 are sentences, then so is their conjunction, s1 ∧s2. 

3. If s1 and s2 are sentences, then so is their disjunction, s1 ∨ s2. 

4. If s1 and s2 are sentences, then so is their implication, s1 → s2. 

5. If s1 and s2 are sentences, then so is their equivalence, s1 ≡s2. 



6. If X is a variable and s a sentence, then ∀ X s is a sentence. 

7. If X is a variable and s a sentence, then ∃X s is a sentence. 

• The definition of predicate calculus sentences and the examples just presented 

suggest a method for verifying that an expression is a sentence. This is written 

as a recursive algorithm, verify_sentence. verify_sentence takes as argument a 

candidate expression and returns success if the expression is a sentence. 

 

function verify_sentence(expression); begin 

case 

expression is an atomic sentence: return SUCCESS; 

expression is of the form Q X s, where Q is either r ∀ or ∃, X is a variable, 

if verify_sentence(s) returns SUCCESS 

then return SUCCESS else return 

FAIL; 

expression is of the form ¬ s: 

if verify_sentence(s) returns SUCCESS then 

return SUCCESS 

else return FAIL; 

expression is of the form s1 op s2, where op is a binary logical operator: if 

verify_sentence(s1) returns SUCCESS and 

verify_sentence(s2) returns SUCCESS 

then return SUCCESS 

else return FAIL; otherwise: 

return FAIL 

end end. 

 

 



➢ THE PROPOSITIONAL CALCULUS: 

✓ Symbols and Sentences 

• The propositional calculus and, in the next subsection, the predicate 

calculus are first of all languages. Using their words, phrases, and 

sentences, we can represent and reason about properties and 

relationships in the world. The first step in describing a language is to 

introduce the pieces that make it up: it’s set of symbols. 

D E F I N I T I O N 

PROPOSITIONAL CALCULUS SYMBOLS 

The symbols of propositional calculus are the propositional symbols: 

P, Q, R, S, … 

truth symbols: 

true, false 

and connectives: 

∧, ∨, ¬, →, ≡ 

 

• Propositional symbols denote propositions, or statements about the world that 

may be either true or false, such as “the car is red” or “water is wet.” 

Propositions are denoted by uppercase letters near the end of the English 

alphabet. Sentences in the propositional cal- culus are formed from these 

atomic symbols according to the following rules: 

D E F I N I T I O N 

PROPOSITIONAL CALCULUS SENTENCES 

Every propositional symbol and truth symbol is a sentence. 

For example: true, P, Q, and R are sentences. 

The negation of a sentence is a sentence. 

For example: ¬ P and ¬false are sentences. 

The conjunction, or and, of two sentences is a sentence. 



For example:  P ∧ ¬ P is a sentence. 

The disjunction, or or, of two sentences is a sentence. 

For example:  P ∨ ¬ P is a sentence. 

The implication of one sentence from another is a sentence. 

For example: P → Q is a sentence. 

The equivalence of two sentences is a sentence. 

For example:  P ∨ Q ≡ R is a sentence. 

 

Legal sentences are also called well-formed formulas or WFFs. 

 

• In expressions of the form P ∧ Q, P and Q are called the conjuncts. In P ∨ Q, P 

and Q are referred to as disjuncts. In an implication, P → Q, P is the premise or 

antecedent and Q, the conclusion or consequent. 

• An expression is a sentence, or well-formed formula, of the propositional 

calculus if and only if it can be formed of legal symbols through some sequence 

of these rules. For example, 

((P ∧ Q) → R) ≡ ¬ P ∨ ¬ Q ∨ R 

is a well-formed sentence in the propositional calculus because: 

P, Q, and R are propositions and thus sentences. 

P ∧ Q, the conjunction of two sentences, is a sentence. 

(P ∧ Q) →R, the implication of a sentence for another, is a sentence. 

¬ P and ¬ Q, the negations of sentences, are sentences. 

¬ P ∨ ¬ Q, the disjunction of two sentences, is a sentence. 

¬ P ∨ ¬ Q ∨ R, the disjunction of two sentences, is a sentence. 

((P ∧ Q) → R) ≡ ¬ P ∨ ¬ Q ∨R, the equivalence of two sentences, is a sentence. 

 

 

 



• This is our original sentence, which has been constructed through a series of 

applications of legal rules and is therefore “well formed”. 

✓ The Semantics of the Propositional Calculus 

presented the syntax of the propositional calculus by defining a set of rules for producing 

legal sentences. In this section we formally define the semantics or “meaning” of these 

sentences. Because AI programs must reason with their representational structures, it is 

important to demonstrate that the truth of their conclusions depends only on the truth of 

their initial knowledge or premises, i.e., that log- ical errors are not introduced by the 

inference procedures. A precise treatment of seman- tics is essential to this goal. 

A proposition symbol corresponds to a statement about the world. For example, P may 

denote the statement “it is raining” or Q, the statement “I live in a brown house.” A 

proposition must be either true or false, given some state of the world. The truth value 

assignment to propositional sentences is called an interpretation, an assertion about their 

truth in some possible world. 

• Formally, an interpretation is a mapping from the propositional symbols into the 

set 

{T, F}. As mentioned in the previous section, the symbols true and false are part of the set 

of well-formed sentences of the propositional calculus; i.e., they are distinct from the truth 

value assigned to a sentence. To enforce this distinction, the symbols T and F are used for 

truth value assignment. 

➢ D E F I N I T I O N 

PROPOSITIONAL CALCULUS SEMANTICS 

An interpretation of a set of propositions is the assignment of a truth value, either T or 

F, to each propositional symbol. 

The symbol true is always assigned T, and the symbol false is assigned F. The 

interpretation or truth value for sentences is determined by: 

The truth assignment of negation, ¬ P, where P is any propositional symbol, is F 

if the assignment to P is T, and T if the assignment to P is F. 

The truth assignment of conjunction, ∧, is T only when both conjuncts have truth 

value T; otherwise, it is F. 

The truth assignment of disjunction, ∨, is F only when both disjuncts have truth 



>
 

value F; otherwise, it is T. 

The truth assignment of implication, →, is F only when the premise or symbol 

before the implication is T and the truth value of the consequent or symbol after 

the implication is F; otherwise, it is T. 

The truth assignment of equivalence, ≡, is T only when both expressions have the 

same truth assignment for all possible interpretations; otherwise, it is F. 

For propositional expressions P, Q, and R: 

¬ (¬ P) ≡ P (P ∨ Q) ≡ (¬ P → Q) 

the contrapositive law: (P → Q) ≡ (¬ Q → ¬ P) 

de Morgan’s law: ¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q) and ¬ (P ∧ Q) ≡ (¬ P ∨¬ Q) 

the commutative laws: (P ∧ Q) ≡ (Q ∧ P) and (P ∨ Q) ≡ (Q ∨ P) 

the associative law: ((P ∧ Q) ∧ R) ≡ (P ∧ (Q ∧ R)) 

associative law: ((P ∨ Q) ∨ R) ≡ (P ∨ (Q ∨ R)) 

the distributive law: P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)  

the distributive law: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) 

P Q P   Q 

T T T 

T F F 

F T F 

F F F 

 Truth table for the operator ∧. 

P Q ¬P ¬P Q P Q (¬P Q)=(P Q) 

T T F T T T 

T F F F F T 

F T T T T T 

F F T T T T 

Figure Truth table demonstrating the equivalence of P → Q and ¬ P ∨ Q. 

 



Application: A Logic-Based Financial Advisor 

• As a final example of the use of predicate calculus to represent and reason about 

problem domains, we design a financial advisor using predicate calculus. 

Although this is a simple example, it illustrates many of the issues involved in 

realistic applications. 

• The function of the advisor is to help a user decide whether to invest in a 

savings account or the stock market. Some investors may want to split their 

money between the two. The investment that will be recommended for 

individual investors depends on their income and the current amount they have 

saved according to the following criteria: 

1. Individuals with an inadequate savings account should always make increasing the 

amount saved their first priority, regardless of their income. 

2. Individuals with an adequate savings account and an adequate income should 

consider a riskier but potentially more profitable investment in the stock market. 

3. Individuals with a lower income who already have an adequate savings account 

may want to consider splitting their surplus income between savings and stocks, to 

increase the cushion in savings while attempting to increase their income through 

stocks. 

The adequacy of both savings and income is determined by the number of dependents 

an individual must support. Our rule is to have at least $5,000 in savings for each 

dependent. An adequate income must be a steady income and supply at least $15,000 per 

year plus an additional $4,000 for each dependent. 

To automate this advice, we translate these guidelines into sentences in the predicate 

calculus. The first task is to determine the major features that must be considered. Here, 

they are the adequacy of the savings and the income. These are represented by the 

predicates savings_account and income, respectively. Both of these are unary predicates, 

and their argument could be either adequate or inadequate. Thus, 

 

savings_account(adequate). 

savings_account(inadequate). 

income(adequate). 



income(inadequate). are their possible 

values. 

• Conclusions are represented by the unary predicate investment, with possible 

values of its argument being stocks, savings, or combination (implying that the 

investment should be split). 

• Using these predicates, the different investment strategies are represented by 

implications. The first rule, that individuals with inadequate savings should 

make increased savings their main priority, is represented by 

 

savings_account(inadequate) → investment(savings). 

Similarly, the remaining two possible investment alternatives are represented by 

savings_account(adequate) ∧ income(adequate) → investment(stocks).  

savings_account(adequate) ∧ income(inadequate) → investment(combination). 

• Next, the advisor must determine when savings and income are adequate or 

inade- quate. This will also be done using an implication. The need to do 

arithmetic calculations requires the use of functions. To determine the 

minimum adequate savings, the function minsavings is defined. minsavings 

takes one argument, the number of dependents, and returns 5000 times that 

argument. 

Using minsavings, the adequacy of savings is determined by the rules 

∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ greater (X, minsavings(Y))) 

 → savings_account(adequate). ∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ ¬ greater 

(X, minsavings(Y))) → savings_account(inadequate).  

where minsavings(X) ≡ 5000 ∗ X. 

 

• In these definitions, amount_saved(X) and dependents(Y) assert the current 

amount in savings and the number of dependents of an investor; greater (X, Y) 

is the standard arithmetic test for one number being greater than another and is 

not formally defined in this example. 

Similarly, a function minincome is defined as 

 

minincome(X) ≡ 15000 + (4000 ∗ X). 



• minincome is used to compute the minimum adequate income when given the 

number of dependents. The investor’s current income is represented by a 

predicate, earnings. Because an adequate income must be both steady and 

above the minimum, earnings take two arguments: the first is the amount 

earned, and the second must be equal to either steady or unsteady. The 

remaining rules needed for the advisor are 

∀ X earnings (X, steady) ∧ ∃ Y (dependents(Y) ∧ greater (X, minincome(Y))) 

→ income(adequate) 

∀ X earnings (X, steady) ∧ ∃ Y (dependents(Y) ∧ ¬ greater (X, 

minincome(Y))) → income(inadequate) 

∀ X earnings (X, unsteady) → income(inadequate). 

 

• In order to perform a consultation, a description of a particular investor is 

added to this set of predicate calculus sentences using the predicates 

amount_saved, earnings, and dependents. Thus, an individual with three 

dependents, $22,000 in savings, and a steady income of $25,000 would be 

described by 

 

 

amount_saved (22000). 

earnings (25000, steady). 

dependents (3). 

✓ This yields a logical system consisting of the following sentences: 

1. savings_account(inadequate) → investment(savings).  

2. savings_account(adequate) ∧ income(adequate) → investment(stocks).  

3. savings_account(adequate) ∧ income(inadequate) → investment(combination).  

4. ∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ greater (X, minsavings(Y))) → 

savings_account(adequate).  

5. ∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ ¬ greater (X, minsavings(Y))) → 

savings_account(inadequate).  

6. ∀ X earnings (X, steady) ∧ ∃ Y (dependents (Y) ∧ greater (X, minincome(Y))) → 

income(adequate). 7. ∀ X earnings (X, steady) ∧ ∃ Y (dependents(Y) ∧ ¬ greater (X, 



minincome(Y))) → income(inadequate). 8. ∀ X earnings (X, unsteady) → 

income(inadequate). 

 9. amount_saved (22000).  

10. earnings (25000, steady).  

11. dependents (3). 

 

➢ AI AS EMPIRICAL ENQUIRY: 

INTRODUCTION 

• The most surprising aspects of work in artificial intelligence is the extent to 

which AI, and indeed much of computer science, turns out to be an empirical 

dis- cipline. This is surprising because most people initially think of these fields 

in terms of their mathematical, or alternatively, their engineering foundations. 

From the mathematicalviewpoint, sometimes termed the “neat” perspective, 

there is the rationalist desire to bring standards of proof and analysis to the 

design of intelligent computational devices.  

• From the engineering, or “scruffy” perspective, the task is often viewed as 

simply making suc- cessful artifacts that society wants to call “intelligent”. 

Unfortunately, or fortunately, depending upon your philosophy, the complexity 

of intelligent software and the ambigu- ities inherent in its interactions with the 

worlds of human activity frustrate analysis from either the purely mathematical 

or purely engineering perspectives. 

• Furthermore, if artificial intelligence is to achieve the level of a science and 

become a critical component of the science of intelligent systems, a mixture of 

analytic and empiri- cal methods must be included in the design, execution, and 

analysis of its artifacts. On this viewpoint each AI program can be seen as an 

experiment: it proposes a question to the nat- ural world and the results are 

nature’s response. Nature’s response to our design and pro- grammatic 

commitments shapes our understanding of formalism, mechanism, and finally, 

of the nature of intelligence itself (Newell and Simon 1976). 

• Unlike many of the more traditional studies of human cognition, we as 

designers of intelligent computer artifacts can inspect the internal workings of 

our “subjects”. We can stop program execution, examine internal state, and 



modify structure at will.  

• As Newell and Simon note, the structure of computers and their programs 

indicate their potential behavior: they may be examined, and their 

representations and search algorithms under- stood. The power of computers 

as tools for understanding intelligence is a product of this duality. 

Appropriately programmed computers are capable of both achieving levels of 

semantic and behavioral complexity that beg to be characterized in 

psychological terms as well as offer an opportunity for an inspection of their 

internal states that is largely denied scientists studying most other intellectual 

life forms. 

• Fortunately for continuing work in AI, as well as for establishing a science of 

intelli- gent systems, more modern psychological techniques, especially those 

related to neural physiology, have also shed new light on the many modes of 

human intelligence. We know now, for example, that human intelligent 

function is not monolithic and uniform.  

• Rather it is modular and distributed. Its power is seen in the sense organs, such 

as the human retina, that can screen and preprocess visual information. 

Similarly, human learning is not a uni- form and homogenous faculty. Rather 

learning is a function of multiple environments and differing systems, each 

adapted to achieve specialized goals. fMRI analysis, along with PET scans, 

EEG, and allied neural physical imaging procedures, all support a diverse and 

cooperative picture of the internal workings of actual intelligent systems. 

• If work in AI is going to reach the level of a science, we must also address 

important philosophical issues, especially those related to epistemology, or the 

question of how an intelligent system “knows” its world. These issues range 

from the question of what is the object of study of artificial intelligence to 

deeper issues, such as questioning the validity and utility of the physical 

symbol system hypothesis.  

• Further questions include what a “symbol” is in the symbol system approach 

to AI and how symbols might relate to sets of weighted nodes in a connectionist 

model.  

• We also question the role of rationalism expressed in the inductive bias seen 

in most learning programs and how this compares to the unfettered lack of 



structure often seen in unsupervised, reinforcement, and emergent approaches 

to learning. Finally, we must question the role of embodiment, situatedness, 

and sociological bias in problem solving. We conclude our discussion of 

philosophicalissues by proposing a constructivist epistemology that fits 

comfortably with both our com- mitment to AI as a science as well as to AI as 

empirical enquiry. 

 

➢ THE SCIENCE OF INTELLIGENT SYSTEM: 

• It is not a coincidence that a major subgroup of the artificial intelligence community 

has focused its research on understanding human intelligence. Humans provide the 

prototypi- cal examples of intelligent activity, and AI engineers, even though they 

are usually not committed to “making programs that act like humans”, seldom ignore 

human solutions.  

• Some applications such as diagnostic reasoning are often deliberately modeled on 

the problem-solving processes of human experts working in that area. Even more 

importantly, understanding human intelligence is a fascinating and open scientific 

challenge in itself. 

• Modern cognitive science, or the science of intelligent systems (Luger 1994), began 

with the advent of the digital computer, even though, as we saw in Chapter 1, there 

were many intellectual forebears of this discipline, from Aristotle through Descartes 

and Boole, to more modern theorists such as Turing, McCulloch and Pitts, the 

founders of the neural net model, and John von Neumann, an early proponent of a-

life.  

• The study became a sci- ence, however, with the ability to design and run 

experiments based on these theoretical notions, and to an important extent, this came 

about with the arrival of the computer. Finally, we must ask, “Is there an all-inclusive 

science of intelligence?” We can further ask, “Can a science of intelligent systems 

support construction of artificial intelligences?” In the following sections we discuss 

briefly how the psychological, epistemological, and sociological sciences support 

research and development in AI. 

 



✓ PSYCHOLOGICAL CONSTRAINTS: 

• Early research in cognitive science examined human solutions to logic problems, 

simple games, planning, and concept learning (Feigenbaum and Feldman 1963, 

Newell andSimon 1972, Simon 1981). Coincident with their work on the Logic 

Theorist, Newell and Simon began to compare their computational approaches with 

the search strategies used by human subjects.  

• Their data consisted of think-aloud protocols, descriptions by human subjects of 

their thoughts during the process of devising a problem solution, such as a logic 

proof. Newell and Simon then compared these protocols with the behavior of the 

computer program solving the same problem. The researchers found remarkable 

similarities and interesting differences across both problems and subjects. 

• These early projects established the methodology that the discipline of cognitive 

sci- ence would employ during the following decades: 

 

1. Based on data from humans solving particular classes of problems, design a rep- 

resentational scheme and related search strategy for solving the problem. 

2. Run the computer-based model to produce a trace of its solution behavior. 

3. Observe human subjects working on these same problems and keep track of mea- 

surable parameters of their solution process, such as those found in think-aloud 

protocols, eye movements, and written partial results. 

4. Analyze and compare the human and computer solutions. 

5. Revise the computer model for the next round of tests and comparisons with the 

human subjects. 

 

• This empirical methodology is described in Newell and Simon’s Turing award 

lecture, quoted at the beginning of this chapter. An important aspect of cognitive 

science is the use of experiments to validate a problem-solving architecture, 

whether it be a production sys- tem, connectionist, emergent, or an architecture 

based on the interaction of distributed agents. 

• In recent years, an entirely new dimension has been added to this paradigm. Now, 

not just programs can be deconstructed and observed in the act of problem solving, 



but humans and other life forms can be as well. A number of new imaging 

techniques have been included in the tools available for observing cortical activity. 

These include magne- toencephalography (MEG), which detects the magnetic 

fields generated by populations of neurons. Unlike the electrical potentials 

generated by these populations, the magnetic field is not smeared by the skull and 

scalp, and thus a much greater resolution is possible. 

 

• A second imaging technology is positron emission tomography, or PET. A 

radioactive substance, typically O15 is injected into the bloodstream. When a 

particular region of the brain is active, more of this agent passes by sensitive 

detectors than when the region is at rest. Comparison of resting and active images 

can potentially reveal functional localiza- tion at a resolution of about 1cm (see 

Stytz and Frieder 1990). 

• Another technique for neural analysis is functional magnetic resonance imaging, 

or fMRI. This approach has emerged from more standard structured imaging based 

on nuclear magnetic resonance (NMR). Like PET, this approach compares resting 

with active neuronal states to reveal functional localization. 

• A further contribution to the localization of brain function, with an important link 

to the imaging techniques just mentioned, is software algorithms developed by 

Barak Pearl- mutter and his colleagues (Pearlmutter and Parra 1997, Tang et al. 

1999, 2000a, 2000b). 

 

➢ AI CURRENT CHALLENGES & FUTURE DIRECTIONS 

• The computational characterization of intelligence begins with the abstract 

specifica- tion of computational devices. Research through the 1930s, 40s, and 

50s began this task, with Turing, Post, Markov, and Church all contributing 

formalisms that describe computa- tion.  

• The goal of this research was not just to specify what it meant to compute, but 

rather to specify limits on what could be computed. The Universal Turing 

Machine (Turing 1950) is the most commonly studied specification, although 

Post’s rewrite rules, the basis for production system computing (Post 1943), is 

also an important contribution. Church’s model (1941), based on partially 

recursive functions, offers support for modern high-level functional languages, 



such as Scheme, Ocaml, and Standard ML. 

• Many consequential questions remain, however, within the epistemological 

founda- tions for intelligence in a physical system. We summarize, for a final 

time, several of these critical issues. 

1. The representation problem. Newell and Simon hypothesized that the physical 

symbol system and search are necessary and sufficient characterizations of intel- 

ligence (see Section 16.1). Are the successes of the neural or sub-symbolic mod- 

els and of the genetic and emergent approaches to intelligence refutations of the 

physical symbol hypothesis, or are they simply other instances of it? 

Even a weak interpretation of this hypothesis—that the physical symbol system is 

a sufficient model for intelligence—has produced many powerful and useful results 

in the modern field of cognitive science. What this argues is that we can implement 

physical symbol systems that will demonstrate intelligent behav- ior. Sufficiency 

allows creation and testing of symbol-based models for many aspects of human 

performance (Pylyshyn 1984, Posner 1989). But the strong interpretation—that the 

physical symbol system and search are necessary for intelligent activity—

remains open to question (Searle 1980, Weizenbaum 1976, Winograd and Flores 

1986, Dreyfus and Dreyfus 1985, Penrose 1989). 

2. The role of embodiment in cognition. One of the main assumptions of the phys- 

ical symbol system hypothesis is that the particular instantiation of a physical 

symbol system is irrelevant to its performance; all that matters is its formal struc- 

ture. This has been challenged by a number of thinkers (Searle 1980, Johnson 1987, 

Agre and Chapman 1987, Brooks 1989, Varela et al. 1993) who essentially argue 

that the requirements of intelligent action in the world require a physical 

embodiment that allows the agent to be fully integrated into that world. The 

architecture of modern computers does not support this degree of situatedness, 

requiring that an artificial intelligence interact with its world through the extremely 

limited window of contemporary input/output devices. If this chal-  lenge is 

correct, then, although some form of machine intelligence may be possi- ble, it will 

require a very different interface than that afforded by contemporary computers. 

(For further comments on this topic see Section 15.0, issues in natural language 

understanding, and Section 16.2.2, on epistemological constraints.) 



3. Culture and intelligence. Traditionally, artificial intelligence has focused on the 

individual mind as the sole source of intelligence; we have acted as if an explana- 

tion of the way the brain encodes and manipulates knowledge would be a com- 

plete explanation of the origins of intelligence. However, we could also argue that 

knowledge is best regarded as a social, rather than as an individual construct. In a 

meme-based theory of intelligence (Edelman 1992), society itself carries essential 

components of intelligence. It is possible that an understanding of the social 

context of knowledge and human behavior is just as important to a theory of 

intelligence as an understanding of the dynamics of the individual mind/brain. 

4. Characterizing the nature of interpretation. Most computational models in the 

representational tradition work with an already interpreted domain: that is, there is 

an implicit and a priori commitment of the system’s designers to an interpre- tive 

context. Under this commitment there is little ability to shift contexts, goals, or 

representations as the problem solving evolves. Currently, there is little effort at 

illuminating the process by which humans construct interpretations. 

The Tarskian view of semantics as a mapping between symbols and objects in 

a domain of discourse is certainly too weak and doesn’t explain, for example, the 

fact that one domain may have different interpretations in the light of differ- ent 

practical goals. Linguists have tried to remedy the limitations of Tarskian 

semantics by adding a theory of pragmatics (Austin 1962). Discourse analysis, 

with its fundamental dependence on symbol use in context, has dealt with these 

issues in recent years. The problem, however, is broader in that it deals with the 

failure of referential tools in general (Lave 1988, Grosz and Sidner 1990). 

The semiotic tradition started by C. S. Peirce (1958) and continued by Eco, 

Seboek, and others (Eco 1976, Grice 1975, Sebeok 1985) takes a more radical 

approach to language. It places symbolic expressions within the wider context of 

signs and sign interpretation. This suggests that the meaning of a symbol can 

of an interpretation and interaction with the environment (see Section 16.2.2). 

5. Representational indeterminacy. Anderson’s representational indeterminacy 

conjecture (Anderson 1978) suggests that it may in principle be impossible to 

determine what representational scheme best approximates the human problem 

solver in the context of a particular act of skilled performance. This conjecture is 

founded on the fact that every representational scheme is inextricably linked to a 



larger computational architecture, as well as search strategies. In the detailed 

analysis of human skill, it may be impossible to control the process sufficiently so 

that we can determine the representation; or establish a representation to the point 

where a process might be uniquely determined. As with the uncertainty principle 

of physics, where phenomena can be altered by the very process of measuring 

them, this is an important concern for constructing models of intelli- gence but 

need not limit their utility. 

But more importantly, the same criticisms can be leveled at the computa- tional 

model itself where the inductive biases of symbol and search in the context of the 

Church-Turing hypothesis still under constrain a system. The perceived need of 

some optimal representational scheme may well be the remnant of a rationalist’s 

dream, while the scientist simply requires models sufficiently robust to constrain 

empirical questions. The proof of the quality of a model is in its abil- ity to offer 

an interpretation, to predict, and to be revised. 

6. The necessity of designing computational models that are falsifiable. Popper 

(1959) and others have argued that scientific theories must be falsifiable. This 

means that there must exist circumstances under which the model is not a suc- 

cessful approximation of the phenomenon. The obvious reason for this is that any 

number of confirming experimental instances are not sufficient for confirmation of 

a model. Furthermore, much new research is done in direct response to the failure 

of existing theories. 

The general nature of the physical symbol system hypothesis as well as situ- 

ated and emergent models of intelligence may make them impossible to falsify and 

therefore of limited use as models. The same criticism can be made of the 

conjectures of the phenomenological tradition Some AI data struc- tures, such as 

the semantic network, are so general that they can model almost anything 

describable, or as with the universal Turing machine, any computable function. 

Thus, when an AI researcher or cognitive scientist is asked under what conditions 

his or her model for intelligence will not work, the answer can be dif- ficult. 

7. The limitations of the scientific method. A number of researchers (Winograd and 

Flores 1986, Weizenbaum 1976) claim that the most important aspects of 

intelligence are not and, in principle, cannot be modeled, and in particular not with 

any symbolic representation. These areas include learning, understanding natural 



language, and the production of speech acts. These issues have deep roots in our 

philosophical tradition. Winograd and Flores’s criticisms, for example, are based 

on issues raised in phenomenology (Husserl 1970, Heidegger 1962). 

Most of the assumptions of modern AI can trace their roots back from Car- nap, 

Frege, and Leibniz through Hobbes, Locke, and Hume to Aristotle. This tra- dition 

argues that intelligent processes conform to universal laws and are, in principle, 

understandable. 

• The most exciting aspect of work in artificial intelligence is that to be coherent 

and contribute to the endeavor we must address these issues. To understand 

problem solving, learning, and language we must comprehend the 

philosophical level of representations and knowledge. In a humbling way we 

are asked to resolve Aristotle’s tension between theoria and praxis, to fashion 

a union of understanding and practice, of the theoretical and practi- cal, to live 

between science and art. 

• AI practicioners are tool makers. Our representations, algorithms, and 

languages are tools for designing and building mechanisms that exhibit 

intelligent behavior. Through experiment we test both their computational 

adequacy for solving problems as well as our own understanding of intelligent 

phenomena. 
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