Accredited by NAAC(Cycle-III) with 'A+' Grade
(Recognized by UGC, Approved by AICTE, New Delhi and
Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC \& CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME : COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit II- Logic Gates
Topic : K-MAP

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as "AND" terms summed with 'OR" operators.
- Standard Product-of-Sums (POS) form: equations are written as "OR" terms, all "ANDed" together.
- Examples:

SOP: A B C+ $\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}+\mathbf{B}$
POS: $(\mathbf{A}+\mathbf{B}) \bullet(\mathbf{A}+\overline{\mathbf{B}}+\overline{\mathbf{C}}) \bullet(\mathbf{C})$

- These "Mixed" forms are not SOP or POS Wrong: $\quad(A B+C)(A+C)$ or $A B \bar{C}+A C(A+B)$

Standard Sum-of-Products (SOP)

- A Sum of Minterms form for n variables can be written down directly from a truth table.
- Implementation of this form is a two-level network of gates such that:
- The first level consists of n-input AND gates, and
- The second level is a single OR gate (with fewer than 2^{n} inputs).
- This form:
- is usually not a minimum literal expression, and
- leads to a more expensive implementation (in terms of two levels of $A N D$ and $O R$ gates) than needed.

Standard Sum-of-Products (SOP)

- Therefore, we try to combine terms to get a lower literal cost expression, leading to a less expensive implementation.
- Example: $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum(1,4,5,6,7)$

Note term ABC duplicated

- Simplifying

dipled

$$
\mathbf{F}=\mathbf{A} \mathbf{B} \mathbf{C}+\mathbf{A} \mathbf{B} \overline{\mathbf{C}}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}+\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}
$$

$$
=\mathbf{A} \mathbf{B}(\mathbf{C}+\overline{\mathbf{C}})+\mathbf{A} \overline{\mathbf{B}} \mathbf{C}+\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}
$$

$$
+\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}
$$

$$
=\mathbf{A B}+\mathbf{A} \underline{\mathbf{B}}(\mathbf{C}+\overline{\mathbf{C}})+(\mathbf{A}+\overline{\mathbf{A}}) \overline{\mathbf{B}} \mathbf{C}
$$

$$
=\mathbf{A} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}^{+} \underline{\mathbf{B}} \mathbf{C}
$$

$$
=\mathbf{A}(\mathbf{B}+\overline{\mathbf{B}})+\overline{\mathbf{B}} \mathbf{C}
$$

$$
=\mathbf{A}+\overline{\mathbf{B}} \mathbf{C}
$$

The Canonical Sum-of-Minterms form has (5 * 3) = 15 literals and 5 terms. The reduced SOP form has 3 literals and 2 terms.

AND/OR Two-level Implementation of SOP Expression

- The two implementations for F are shown below: (Which is simpler?)

Standard Product-of-Sums (POS)

- A Product of Maxterms form for \boldsymbol{n} variables can be written down directly from a truth table.
- Implementation of this form is a two-level network of gates such that:
- The first level consists of \boldsymbol{n}-input OR gates, and - The second level is a single AND gate (with fewer than $2 n$ inputs).
- This form:
- is usually not a minimum literal expression, and
- leads to a more expensive implementation (in terms of two levels of AND and OR gates) than needed.

Standard Product-of-Sums (POS)

We can use Boolean algebra to minimize the literal cost of an expression for POS forms.

Example:
 $$
F=\prod(0,2,3)
$$

Becomes:
(Note duplicate term)

$$
\begin{aligned}
\mathrm{F} & =(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \\
\mathrm{F} & =(\mathrm{A}+\mathrm{C}+\mathrm{B})\left(\mathrm{A}+\mathrm{C}+\mathrm{B}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \\
& =\left((\mathrm{A}+\mathrm{C})+\mathrm{BB}^{\prime}\right)\left(\left(\mathrm{A}+\mathrm{B}^{\prime}\right)+\mathrm{C}^{\prime}\right) \\
& =((\mathrm{A}+\mathrm{C})+0)\left(\left(\mathrm{A}+\mathrm{B}^{\prime}\right)+0\right) \\
& =(\mathrm{A}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}^{\prime}\right)
\end{aligned}
$$

Standard Product-of-Sums (POS)

- Therefore, we try to combine terms to get a lower literal cost expression, leading to a less expensive implementation.
- Example: $\boldsymbol{F}=\prod(0,2,3)$

Note term $\mathbf{A}+\mathbf{B}+\mathbf{C}$ duplicated

- Simplifying

$$
\begin{aligned}
& \mathbf{F}=(\mathbf{A}+\mathbf{B}+\mathbf{C})(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\overline{\mathbf{B}}+\overline{\mathbf{C}}) \\
& \mathbf{F}=(\mathbf{A}+\mathbf{C}+\mathbf{B})(\mathbf{A}+\mathbf{C}+\overline{\mathbf{B}})(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{A}+\overline{\mathbf{B}}+\overline{\mathbf{C}}) \\
& \\
& =(\mathbf{A}+\mathbf{C})+\mathbf{B} \overline{\mathbf{B}})((\mathbf{A}+\overline{\mathbf{B}})+\mathbf{C} \overline{\mathbf{C}})
\end{aligned}
$$

$$
=((\mathbf{A}+\mathbf{C})+\mathbf{0})((\mathbf{A}+\overline{\mathbf{B}})+\mathbf{0})
$$

$$
=(\mathbf{A}+\mathbf{C})(\mathbf{A}+\overline{\mathbf{B}})
$$

The Canonical Product-ofMaxterms form had (3*3) = 9 literals and 3 terms. The reduced POS form had 4 literals and 2 terms.

OR/AND Two-level Implementation

- The two implementations for F are shown below: (Which is simpler?)

SOP and POS Observations

- The previous examples show several things:
- Canonical Forms (Sum-of-minterms, Product-ofMaxterms), or other standard forms (SOP, POS) can differ in literal cost.
- Boolean algebra can be used to manipulate equations into simpler forms.
- Simpler equations lead to simpler two-level implementations
- Questions:
- How can we attain a minimum literal expression?
- Is there only one minimum cost circuit?

Equivalent Cost Circuits

$$
\begin{aligned}
& \text { Given: } \mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum(\mathbf{0}, \mathbf{2}, \mathbf{3}, \mathbf{4}, 5,7) \\
& \mathbf{F}=\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B C} \mathbf{C}+\mathbf{A} B^{\prime} \mathbf{C}^{\prime}+\mathbf{A B} B^{\prime} \mathbf{C}+\mathbf{A B C} \\
&=\mathbf{A}^{\prime} \mathbf{C}^{\prime} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{C}^{\prime} \mathbf{B}+\mathbf{A} \mathbf{B}^{\prime} \mathbf{C}+\mathbf{A} \mathbf{B}^{\prime} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B C}+\mathbf{A B C} \\
&=\mathbf{A}^{\prime} \mathbf{C}^{\prime}\left(\mathbf{B}+\mathbf{B}^{\prime}\right)+\mathbf{A B} \mathbf{B}^{\prime}\left(\mathbf{C}+\mathbf{C}^{\prime}\right)+\left(\mathbf{A}^{\prime}+\mathbf{A}^{\prime}\right) \mathbf{B C} \\
&=\mathbf{A}^{\prime} \mathbf{C}^{\prime}+\mathbf{A} \mathbf{B}^{\prime}+\mathbf{B C}
\end{aligned}
$$

$B y$ pairing terms differently at the start:

$$
\mathbf{F}=\mathbf{A} \mathbf{B}^{\prime} \mathbf{C}+\mathbf{A B C}+\mathbf{A}^{\prime} \mathbf{B C} C^{\prime}+\mathbf{A}^{\prime} \mathbf{B C}+\mathbf{A} \mathbf{B}^{\prime} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}
$$

We arrive at:

$$
\mathbf{F}=\mathbf{A} \mathbf{C}+\mathbf{A}^{\prime} \mathbf{B}+\mathbf{B}^{\prime} \mathbf{C}^{\prime}
$$

BOTH HAVE THE SAME LITERALS COUNTS AND NUMBER OF TERMS !!

Boolean Function Simplification

-Reducing the literal cost of a Boolean Expression leads to simpler networks.

- Simpler networks are less expensive to implement.
-Boolean Algebra can help us minimize literal cost.
-When do we stop trying to reduce the cost?
-Do we know when we have a minimum?
-We will introduce a systematic way to arrive a a minimum cost, two-level POS or SOP network.

Karnaugh Maps (K-map)

- Diagram is a collection of squares
- Each square represents a minterm
- Collection of squares is a graphical representation of the Boolean function
- Adjacent squares differ in one variable
- Pattern recognition is used to derive alternative algebraic expressions for the same function
- The Karnaugh Map can be viewed as an extension of the truth table
- The Karnaugh Map can be viewed as a topologically warped Venn diagram as used to visualize sets

Uses of Karnaugh Maps

- Provide a means for finding optimum:
- Simple SOP and POS standard forms, and
- Small two-level AND/OR and OR/AND circuits
- Visualize concepts related to manipulating Boolean expressions
- Demonstrate concepts used by computer-aided design programs to simplify large circuits
- Note that minterm m_{0} and minterm m_{1} are "adjacent"' and differ in the value of the variable y.
- Similarly, minterm m_{0} and minterm m_{2} differ in the x variable.

	$\mathbf{y}=\mathbf{0}$	$\mathbf{y}=\mathbf{1}$
$\mathbf{x}=\mathbf{0}$	$\mathbf{m}_{\mathbf{0}}=$	$\mathbf{m}_{\mathbf{1}}=$
	$\overline{\mathbf{x}}$	$\overline{\mathbf{y}}$
$\overline{\mathbf{x}} \mathbf{y}$		
$\mathbf{x}=\mathbf{1}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{m}_{\mathbf{3}}=\mathbf{x}$
$=\mathbf{x}$	$\overline{\mathbf{y}}$	\mathbf{y}

- Note that m_{1} and m_{3} differ in the x variable as well.
- Minterms m_{2} and m_{3} differ in the value of the variable y

K-Map and Function Tables

- The K-Map is just a different form of the function table. For two variables, both are shown below. We choose a, b, c and d from the set $\{0,1\}$ to implement a particular function, $\mathbf{F}(\mathbf{x}, \mathbf{y})$.

Function Table

Input Values (\mathbf{x}, \mathbf{y})	Function Value F(x,y)
$\mathbf{0} \mathbf{0}$	\mathbf{a}
$\mathbf{0 1}$	\mathbf{b}
$\mathbf{1 0}$	\mathbf{c}
$\mathbf{1} \mathbf{1}$	\mathbf{d}

K-Map Function Representations

Examples

$\mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{x}$		
$\mathbf{F}=\mathbf{x}$	$\mathbf{y}=\mathbf{0}$	$\mathbf{y}=\mathbf{1}$
$\mathbf{x}=\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{x}=\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

$\mathbf{G}(\mathbf{x}, \mathbf{y})$		
$\mathbf{G}=\mathbf{x}+\mathbf{y}$	$\mathbf{y}=\mathbf{0}$	$\mathbf{y}=\mathbf{1}$
$\mathbf{x}=\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{x}=\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

For function $\mathrm{F}(\mathrm{x}, \mathrm{y})$, the two adjacent cells containing 1's can be combined using the Minimization Theorem:

- $\mathbf{F o r} \mathbf{F}(\mathbf{G}(\mathbf{x}, \mathrm{y})$) two pairs of adjacent cells containing 1 's can be combined using the Minimization Theorem:
$\mathbf{G}(\mathbf{x}, \mathbf{y})=(\mathbf{x} \bar{y}+\mathbf{x y})+(\mathbf{x y}+\bar{x} y)=x+\mathbf{y}$
- A three variable Karnaugh Map is shown below:

	$y z=00$	$y z=01$	$y z=11$	$y z=10$
$\mathbf{x}=0$	\mathbf{m}_{0}	m_{1}	m_{3}	m_{2}
$\mathbf{x}=1$	\mathbf{m}_{4}	m_{5}	m_{7}	\mathbf{m}_{6}

- Where each minterm corresponds to the product

terms below:	$y z=00$	$\mathrm{yz}=01$	$\mathrm{yz}=11$	$y z=10$
$\mathrm{x}=0$	$\overline{\mathrm{x}} \mathrm{y}$ z	$\overline{\mathrm{x}} \overline{\mathrm{y}} \mathrm{z}$	x y z	$\overline{\mathrm{x}} \mathrm{y}$ z $\overline{\mathrm{z}}$
$\mathrm{x}=1$	$x \bar{y} \bar{z}$	x y z	x y z	X y z

- Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the Karnaugh Map

Example Functions

- By convention, we represent the minterms by a " 1 '" in the map and leave the other terms blank. A function table would also show the ' 0 '' terms.

Example:
$\sum \mathbf{m}(2,3,4,5)$

Example:
$\sum \mathbf{m}(\mathbf{3}, 4,6,7)$

	$\mathbf{y z}=\mathbf{0 0}$	$\mathbf{y z}=\mathbf{0 1}$	$\mathbf{y z}=\mathbf{1 1}$	$\mathbf{y} \mathbf{z}=\mathbf{1 0}$
$\mathbf{x}=\mathbf{0}$			$\mathbf{1}$	$\mathbf{1}$
$\mathbf{x}=\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		
	$\mathbf{y z}=\mathbf{0 0}$	$\mathbf{y z}=\mathbf{0 1}$	$\mathbf{y z}=\mathbf{1 1}$	$\mathbf{y z}=\mathbf{1 0}$
$\mathbf{x}=\mathbf{0}$			$\mathbf{1}$	
$\mathbf{x}=\mathbf{1}$	$\mathbf{1}$		$\mathbf{1}$	$\mathbf{1}$

By combining squares, we reduce the representation for a term, reducing the number of literals in the Boolean equation.

- On a three-variable K-Map:
- One square represents a minterm with three variables
- Two adjacent squares represent a product term with two variables
- Four "adjacent" terms represent a product term with one variable
- Eight "adjacent" terms is the function of all ones (no variables) $=1$.

Combining Squares Example

- Example: Let $\mathbf{F}=\sum \mathbf{m}(2,3,6,7)$

F	$\mathrm{yz}=00$	$\mathbf{y z}=01$	$\mathbf{y z}=11$	$\mathbf{y z}=10$
$\mathbf{x}=\mathbf{0}$			1	$\mathbf{1}$
$\mathbf{x}=\mathbf{1}$			1	$\mathbf{1}$

- Applying the Minimization Theorem three times:

$$
\begin{aligned}
\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & =\overline{\mathbf{x}} \mathbf{y} \mathbf{z}+\mathbf{x} \mathbf{y} \mathbf{z}+\overline{\mathbf{x}} \mathbf{y} \overline{\mathbf{z}}+\mathbf{x} \mathbf{y} \overline{\mathbf{z}} \\
& =\mathbf{y z}+\mathbf{y z} \\
& =\mathbf{y}
\end{aligned}
$$

- Thus the four terms that form a $\mathbf{2} \times \mathbf{2}$ square correspond to the term ' \mathbf{y} '.

Alternate K-Map Diagram

There are many ways to draw a three variable K-Map. Three common ways are shown below:

References

1.M.Morris Mano, "Computer System Architecture" $3^{\text {rd }}$ Edition, Prentice Hall of India ,2000, ISBN-10: 0131663631
2. V.K. Puri, -DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 9780074633175
3.William Stallings, "Computer Organization and Architecture, Designing for Performance" PHI/ Pearson Education North Asia Ltd., 10th Edition 2016, ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8.

Thank You

