

Accredited by NAAC(Cycle–III) with 'A+' Grade (Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC & CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME : COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit II- Logic Gates Topic : K-MAP

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as "AND" terms summed with "OR" operators.
- Standard Product-of-Sums (POS) form: equations are written as "OR" terms, all "ANDed" together.
- Examples:
 - **SOP:** A B C+ \overline{A} \overline{B} C + B
 - **POS:** $(\mathbf{A} + \mathbf{B}) \bullet (\mathbf{A} + \mathbf{B} + \mathbf{C}) \bullet (\mathbf{C})$
- These "Mixed" forms are <u>not SOP or POS</u> Wrong: (A B + C) (A + C) or A B C + A C (A + B)

- A Sum of Minterms form for *n* variables can be written down directly from a truth table.
- Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form:
 - is usually <u>not</u> a minimum literal expression, and
 - Ieads to a more expensive implementation (in terms) of two levels of AND and OR gates) than needed.

- Therefore, we try to combine terms to get a <u>low</u>er literal cost expression, leading to a less expensive implementation.
- Example: $F(A, B, C) = \sum (1, 4, 5, 6, 7)$
- Simplifying $\mathbf{F} = \mathbf{A} \ \mathbf{B} \ \mathbf{C} + \mathbf{A} \ \mathbf{C} \ \mathbf{C} +$
 - $= A B (C + \overline{C}) + A \overline{B} C + A \overline{B} \overline{C}$ $+ \mathbf{A} \mathbf{B} \mathbf{C} + \mathbf{A} \mathbf{B} \mathbf{C}$
 - $= \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} (\mathbf{C} + \mathbf{C}) + (\mathbf{A} + \mathbf{A}) \mathbf{B} \mathbf{C}$ = A B + A B + B C
 - $= \mathbf{A} (\mathbf{B} + \mathbf{B}) + \mathbf{B} \mathbf{C}$
 - $= \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$

Note term ABC duplicated

The Canonical Sumof-Minterms form has (5 * 3) = 15 literals and 5 terms. The reduced SOP form has 3 literals and 2

terms.

AND/OR Two-level Implementation of SOP Expression

• The two implementations for F are shown below: (Which is simpler?)

Standard Product-of-Sums (POS)

- A <u>Product</u> of Maxterms form for *n* variables can be written down directly from a truth table.
- Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input OR gates, and
 - The second level is a single AND gate (with fewer than 2*n* inputs).
- This form:
 - is usually <u>not</u> a minimum literal expression, and
 - Ieads to a more expensive implementation (in terms of two levels of AND and OR gates) than needed.

Standard Product-of-Sums (POS)

We can use Boolean algebra to minimize the literal cost of an expression for POS forms.

Example: $F = \prod (0, 2, 3)$

Becomes: (Note duplicate term)

- F = (A+B+C)(A+B'+C)(A+B'+C')
- - = ((A+C)+BB')((A+B')+CC')
 - = ((A+C)+0)((A+B')+0)
 - = (A+C)(A+B')

F = (A+C+B)(A+C+B')(A+B'+C)(A+B'+C')

- Therefore, we try to combine terms to get a <u>lower</u> literal cost expression, leading to a less expensive implementation.
- Example: F = [](0,2,3)
- Simplifying

 $\mathbf{F} = (\mathbf{A} + \mathbf{B} + \mathbf{C})(\mathbf{A} + \mathbf{B} + \mathbf{C})(\mathbf{A} + \mathbf{B} + \mathbf{C})$ F = (A + C + B)(A + C + B)(A + B + C)(A + B + C)= ((A + C) + B B)((A + B) + C C)= ((A + C) + 0)((A + B) + 0)= (A + C)(A + B)

Note term A + B + C duplicated

The Canonical Product-of-Maxterms form had (3 * 3) =9 literals and 3 terms. The reduced POS form had 4 literals and 2 terms.

 The two implementations for F are shown **below:** (Which is simpler?)

- The previous examples show several things:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) can differ in literal cost.
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a minimum literal expression?
 - Is there only one minimum cost circuit?

Equivalent Cost Circuits

- Given: $F(A, B, C) = \sum (0, 2, 3, 4, 5, 7)$
 - $\mathbf{F} = \mathbf{A'B'C'} + \mathbf{A'BC'} + \mathbf{A'BC'} + \mathbf{AB'C'} + \mathbf{AB'C'} + \mathbf{AB'C'} + \mathbf{ABC'} +$
 - = A'C'B'+A'C'B+AB'C+AB'C'+A'BC+ABC'
 - = A'C'(B+B')+AB'(C+C')+(A+A')BC
 - $= \mathbf{A'C'} + \mathbf{AB'} + \mathbf{BC}$
- By pairing terms <u>differently</u> at the start:
 - $\mathbf{F} = \mathbf{AB'C} + \mathbf{ABC} + \mathbf{A'BC'} + \mathbf{A'BC} + \mathbf{AB'C'} + \mathbf{A'B'C'}$
- We arrive at:
 - $\mathbf{F} = \mathbf{A}\mathbf{C} + \mathbf{A'B} + \mathbf{B'C'}$

BOTH HAVE THE SAME LITERALS COUNTS AND NUMBER OF TERMS !!

- •Reducing the literal cost of a Boolean Expression leads to simpler networks.

- •Simpler networks are less expensive to implement. •Boolean Algebra can help us minimize literal cost. •When do we stop trying to reduce the cost? •Do we know when we have a minimum? •We will introduce a systematic way to arrive a a minimum cost, two-level POS or SOP network.

- Diagram is a collection of squares
- Each square represents a minterm
- Collection of squares is a graphical representation of the Boolean function
- Adjacent squares differ in one variable
- Pattern recognition is used to derive alternative algebraic expressions for the same function
- The Karnaugh Map can be viewed as an extension of the truth table
- The Karnaugh Map can be viewed as a topologically warped Venn diagram as used to visualize sets

Uses of Karnaugh Maps

- Provide a means for finding optimum:
 - Simple SOP and POS standard forms, and
 - Small two-level AND/OR and OR/AND circuits
- Visualize concepts related to manipulating Boolean expressions
- · Demonstrate concepts used by computer-aided design programs to simplify large circuits

ssions ograms to simplify large circuits

Two Variable Maps

A Two variable Karnaugh Map:

- Note that minterm m₀ and minterm m₁ are "adjacent" and differ in the value of the variable y.
- Similarly, minterm m₀ and minterm m₂ differ in the x variable.
- Note that m₁ and m₃ differ in the x variable as well.
- Minterms m₂ and m₃ differ in the value of the variable y

	y=0	y=1
x=0	$\frac{\mathbf{m_0}}{\mathbf{x}} \equiv \frac{\mathbf{w_0}}{\mathbf{y}}$	$m_1 \equiv \frac{1}{\mathbf{x} \mathbf{y}}$
x=1	m _{2_} =x y	$m_3 \equiv x$ y

K-Map and Function Tables

• The K-Map is just a different form of the function table. For two variables, both are shown below. We choose a,b,c and d from the set {0,1} to implement a particular function, F(x,y).

Function Table

Input Voluos	Function	
(x,y)	F(x,y)	
00	a	
01	b	
10	С	
11	d	

K-Map

For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:
F(x,y) = x y + x y = x
For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem: $G(x, y) = (\overline{xy} + xy) + (xy + \overline{xy}) = x + y$

Duplicate x y

- A three variable Karnaugh Map is **below:** yz=00 yz=01 y $\mathbf{x}=\mathbf{0}$ $\mathbf{m}_{\mathbf{0}}$ \mathbf{m}_1 $\mathbf{x}=\mathbf{1}$ m_4 m_5
- Where each minterm corresponds terms below: yz=00yz=01V x=0X Y Z X Y Z x=1Ζ Σ XV x yz
- Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the Karnaugh Map

s shown				
z=11	yz=10			
m ₃	m ₂			
m ₇	m ₆			
to the product				
z=11	yz=10			
x y z	xyz			
хуz	xy z			
indo	z diffore			

Example Functions

• By convention, we represent the minterms by a "1" in the map and leave the other terms blank. A function table would also show the "0" terms.

		yz=00	yz=
Example:	x=0		
$\sum m(2,3,4,5)$	x=1	1	1
		yz=00	yz=(
Example:	x=0		
$\sum m(3,4,6,7)$	x=1	1	

Combining Squares

- By combining squares, we reduce the representation for a term, reducing the number of literals in the Boolean equation.
- On a three-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones (no variables) = 1.

Combining Squares Example

• Example: Let $F = \sum m(2,3,6,7)$ \mathbf{F}

 $\mathbf{x}=\mathbf{0}$

x=1

- Applying the Minimization Theorem three times: $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x} \mathbf{y} \mathbf{z} + \mathbf{x} \mathbf{y} \mathbf{z} + \mathbf{x} \mathbf{y} \mathbf{z} + \mathbf{x} \mathbf{y} \mathbf{z}$ = yz + yz $= \mathbf{v}$
- Thus the four terms that form a 2×2 square correspond to the term "y".

Alternate K-Map Diagram

There are many ways to draw a three variable K-Map. Three common ways are shown below:

01	11	10
m₁	m ₃	m_2
m ₅	m ₇	m ₆

References

- 1.M.Morris Mano, "Computer System Architecture" 3rd Edition, Prentice Hall of India ,2000, ISBN-10: 0131663631
- 2. V.K. Puri, –DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 978-0074633175
- Organization 3.William Stallings, "Computer and Architecture, for Performance" PHI/ Pearson Education North Asia Ltd., 10th Designing Edition 2016, ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8.

Thank You

