Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE
 (AUTONOMOUS)
 COIMBATORE-641049
 Accredited by NAAC(Cycle III) with "A+" Grade
 Recognised by UGC, Approved by AICTE, New Delhi and
 Affiliated to Bharathiar University, Coimbatore.

 DEPARTMENT OF COMPUTER SCIENCE

 DEPARTMENT OF COMPUTER SCIENCE}

Computer System Architecture

> I YEAR - I SEM

UNIT 1 - Data Representation

Gray Code

The Gray Code is a sequence of binary number systems, which is also known as Reflected Binary Code msimurions XOR Table

\mathbf{A}	\mathbf{B}	\mathbf{Y}
O	O	O
O	1	1
1	0	1
1	1	0

Gray Code - Binary Code

The gray code of the binary number 0111 is 0100

The binary code of the gray number 0100 is 0111

BCD Code

Binary Coded Decimal, or BCD , is another process for converting decimal numbers into their binary equivalents.

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Example 1:

Convert (123) ${ }_{10}$ in BCD

$$
\begin{aligned}
& 1->0001 \\
& 2->0010 \\
& 3->0011
\end{aligned}
$$

BCD of 123 -> 000100100011

Example 2:

Convert (324) ${ }_{10}$ in BCD

3	2	4
0011	0010	0100

BCD of 324 -> 001100100100

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.
Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	7^{87}
8	7
+ 3	+3
11	10
1011	1010

Example 1:	15.9	
1	5	9
+3	+3	+3

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.
Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	7^{87}
8	7
+ 3	+3
11	10
1011	1010

Example 1:	15.9	
1	5	9
+3	+3	+3

EBCDIC

Extended binary coded decimal interchange code (EBCDIC) is an 8-bit binary

code for numeric and alphanumeric characters.

ASCII

ASCII, abbreviation of American Standard Code For Information

 Interchange, a standard data-transmission code that is used by smaller and lesspowerful computers to represent both textual data and non input-device commands.| Alphabets | A | B | C | D | E | F | a | b | c | d | e | f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII | 65 | 66 | 67 | 68 | 69 | 70 | 97 | 98 | 99 | 100 | 101 | 101 |

Thank You

