

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS) COIMBATORE-641049 Accredited by NAAC(Cycle III) with "A+" Grade Recognised by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore.

DEPARTMENT OF COMPUTER SCIENCE

Computer System Architecture

I YEAR - I SEM

UNIT 1 – Data Representation

Gray Code

The Gray Code is a sequence of binary number systems, which is also known as Reflected Binary Code

XOR Table

Α	в	Ŷ
0	0	0
0	1	1
1	0	1
1	1	0

Binary Code – Gray Code

The gray code of the binary number 0111 is 0100

Gray Code – Binary Code

The binary code of the gray number 0100 is 0111

BCD Code

Binary Coded Decimal, or BCD, is another process for converting decimal numbers into their binary equivalents. .

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Example 1:

Convert $(123)_{10}$ in BCD

1 -> 0001 2 -> 0010 3 -> 0011

BCD of 123 -> 0001 0010 0011

Example 2:

Convert (324)₁₀ in BCD <u>3</u> <u>2</u> <u>4</u> 0011 0010 0100

BCD of 324 -> 0011 0010 0100

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.

Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	: 87	E	Example 1: 15.9						
8	7		1	5	9				
+ 3	+ 3		+ 3	+ 3	+ 3				
11 ↓	10 ↓	Excess code of 87 = 1011 1010	4 ↓ 0100	8 ↓ 1000	12 ↓ 1100	Excess code of 15.9 is 1001000.1100			
1011	1010								

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.

Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	: 87	E	Example 1: 15.9						
8	7		1	5	9				
+ 3	+ 3		+ 3	+ 3	+ 3				
11 ↓	10 ↓	Excess code of 87 = 1011 1010	4 ↓ 0100	8 ↓ 1000	12 ↓ 1100	Excess code of 15.9 is 1001000.1100			
1011	1010								

Extended binary coded decimal interchange code (EBCDIC) is an 8-bit binary

code for numeric and alphanumeric characters.

ASCII, abbreviation of American Standard Code For Information Interchange, a standard data-transmission code that is used by smaller and lesspowerful computers to represent both textual data and non input-device commands.

Alphabets	Α	В	С	D	E	F	a	b	с	d	e	f
ASCII	65	66	67	68	69	70	97	98	99	100	101	101

Thank You