7

CORE-6 VISUAL PROGRAMMING - VISUAL BASIC

Subject Description: This subject deals Visual Basic Programming concepts.

Goal: Knowledge on Visual Programming and how to develop a Project using Visual Basic.

Objective: To inculcate knowledge on Programming and Project Development using Visual

Basic.

UNIT-I: Introducing Visual Basic: What is VB? – Event and Event Procedures – Objectrelated

concepts –VB program Development Process – Required Computer Skills – Logical

Program Organization -VB Program Components – VB environment – Opening, Saving,

Running a VB Project – Getting Help – Sample VB project. Visual Basic Fundamentals:

Numeric, String constants – Variables – Data Types and Declarations – Operators and

Expressions –Hierarchy of Operations – Inserting Parentheses – Special Rules concerning

Numeric Expressions – String Expressions - Assigning Values to Variables – Displaying out –

Library Functions - Program Comments. Branching and Looping: Relational operators and

Logical Expressions – Branching with If-Then, If-Then-Else blocks – Selection Select Case –

Looping with For-Next, Do-Loop, While-Wend – Stop statement.

UNIT-II: Visual Basic control Fundamentals: Control tools – Control tool Categories –

Working with Controls – Naming Forms and Controls – Assigning Property values to Forms and

Controls – Executing commands – Displaying Output – Entering Input Data – Selecting Multiple

Features, Exclusive Alternatives, Form from a List - Assigning Properties collectively –

Generating Error Messages – Creating timed Events – Scroll Bars.

UNIT-III: Menus and Dialog Boxes: Building Drop-Down Menus – Accessing Menu from

Keyboard – Menu Enhancements – Submenus – Pop-Up Menus – Dialog Boxes – more about

MsgBox Function – The Input Box function. Executing and Debugging a New Project: Syntax

errors – Logical errors – Setting Breakpoints – Defining Watch Values – Stepping Through a

Program – User-induced Errors – Error-handlers – Generating a Stand alone Executable

Program.

UNIT-IV: Procedures: Modules and Procedures – Sub Procedures – Event Procedures –

Function Procedures – Scope – Optional Arguments. Arrays: Characteristics – Declarations –

Processing – Passing Arrays to Procedures – Dynamic Arrays – Array-related Functions –

Control Arrays – Looping with for Each-Next.

UNIT-V: Data Files: Characteristics – Accessing and Saving a File in VB: The Common Dialog

Control – Processing a Data file – Sequential Data Files – Random-Access Data files – Binary

files.

TEXTBOOK:

1. VISUAL BASIC – Byron S. Gottfried, Schaum’s Outline series, TMH.

(UNIT-I: Chapters 1, 2 & 3 UNIT II: Chapter 4 UNIT-III: Chapter 5 & 6

UNIT-IV: Chapters 7 & 8 UNIT V: Chapter 9)

REFERENCE BOOK:

1. The Complete reference VISUAL BASIC – Noel Jerke, TMH.

UNIT-I
 Introduction
[image: image1.png]

[image: image2.png]

[image: image3.png]

 Visual Basic (VB) was developed from the BASIC programming language. In the 1970s, Microsoft started developing ROM-based interpreted BASIC for the early microprocessor-based computers. In 1982, Microsoft QuickBasic revolutionized Basic and was legitimized as a serious development language for MS-DOS environment. Later on, Microsoft Corporation created the enhanced version of BASIC called Visual Basic for Windows.

INTRODUCING VISUAL BASIC
 Visual Basic (VB) is an ideal programming language for developing sophisticated professional applications for Microsoft Windows. It makes use of Graphical User Interface for creating robust and powerful applications. The Graphical User Interface as the name suggests, uses illustrations for text, which enable users to interact with an application. This feature makes it easier to comprehend things in a quicker and easier way.
Visual Basic is an object-oriented programming development system for creating applications that run under any of the Microsoft Windows environments. It has following two major components

· An extensive collection of prewritten tools called controls. These controls are accessible as icons within graphical programming environment for creating customized windows components(e.g.. menus,dialogboxes,textboxes,slide bars.etc)

· A complete set of program commands derived from Microsoft’s implementation of the classical basic programming language

EVENT AND EVENT PROCEDURE
 In traditional computer programs, the actions are carried out in a prescribed order.
· This order may be sequen​tial, corresponding to the order in which the instructions are written, or it may depend on the outcome of one or more logical tests.
· In either case, the order of execution is determined internally within the program.
· Visual basic on the other hand, is based upon an event-driven paradigm, in which each feature included within the program is , activated only when the user responds to a corresponding object (i.e., an icon, a check box, an option button, a menu selection, etc.) within the user interface.

· The program's response to an action, taken by the user is referred to as an event.

· The user initiates the event, but it is the program's response that actually defines the event. The group of Basic commands that brings about this response is called an event procedure
OBJECT-RELATED CONCEPTS
.

1. Forms: In Visual Basic, a window is called a form. Each form includes a title bar at the top.A form may also include a menu bar, a status bar, one or more toolbars, slide bars, etc.A user area (called a client area) occupies the remaining space within the form. Some applications are based upon a single form, while others require two or more forms.

2. Controls:The icons with which the user interacts are called controls. Commonly used controls include com​mand buttons, option buttons, check boxes, labels, text boxes, picture boxes and menus. The user will typically activate a control (e.g., click on a command button) to produce an event.

3. Objects : Forms and controls are referred to collectively as objects. Most objects are associated with events; hence, objects may include their own unique event procedures. Objects are also associated with their own properties and methods .
4. Properties: Objects include properties that generally define their appearance or behavior. The choice of prop​erties depends on the type of object. For example, the name, caption, height, width, background color, location and font are some of the more common properties associated with a command but​ton.
5. Methods: Some objects also include special program statements called methods. A method brings about some predefined action affecting the associated object. For example, show is a method that can be used with a hidden form to make it visible
THE VISUAL BASIC PROGRAM DEVELOPMENT PROCESS

In general terms, the process of writing a Visual Basic program consists of several steps. They are:

1. Decide what the program IS supposed to do. Be as specific as possible.

2. Create a user interface, using Visual Basic's program development tools. This generally involves two re​lated

 activities:

(a) Draw the controls within their respective forms.

(b) Define the properties of each control.

3. Write the Visual Basic instructions to carry out the actions resulting from the various program events. This generally involves writing a group of commands, called an event procedure, for each control (though cer​tain controls, such as labels, do not have event procedures associated with them).

4. Run the program to verify that it executes correctly.

5. Repeat one or more steps if the results are incorrect, or if the program does not respond as you had intended.

REQUIRED COMPUTER SKILLS
1. Familiarity with one of the Microsoft Windows operating systems (e.g., Windows 2000/98/95/NT, etc.). In particular:

(a) Entering windows.

(b) Using a mouse.

(c) Accessing an application (specifically, Visual Basic).

(d) Leaving windows.

(e) Getting on-line help.

2. Managing files within Windows (locating files, opening files, editing files, saving files, copying files, moving files, deleting files, etc.).

3. Installing new applications (in case Visual Basic has not already been installed, or needs to be reinstalled).

LOGICAL PROGRAM ORGANIZATION
Virtually all nontrivial computer programs involve three major tasks. They are:
. Entering input data (supplying information to be processed).

2. Computing the desired results (processing the input data).

3. Displaying the results (displaying the results of the computation.

· Each step may be complex; its implementation may therefore require considerable time and effort.

· In Visual Basic, the first and last steps (data input and data output) are accomplished tough the user interface.

· It is important to design a user interface that will accept input data and display output in a man​ner that is logical and straightforward for the particular application at hand.

· In many applications, the design of the user interface is the most complicated part of the entire program development process; though the controls built into Visual Basic simplify this process considerably.

· The second step (computation) is usually carried out by a series of Visual Basic instructions, embedded in one or more independent event procedures.

· The selection and order of these Visual Basic instructions are de​termined by an appropriate algorithm, i.e., a logical and orderly computational strategy for transforming the given input data into the desired output data.

· In many realistic applications, this step (i.e., the implementation of the algorithm) can be very complicated, challenging the abilities of very skilled programmers.

VISUAL BASIC PROGRAM COMPONENTS

· In Visual Basic, a program is referred to as a project.
· Every Visual Basic project consists of at least two sepa​rate files - a project file (whose extension is .vbp), and a form file (with extension .frm).
· Some projects include multiple form files and other types of files, such as class module (.cls) files, standard module (bas) files, re​source (.res) files, and ActiveX control (.ocx) files.

· The development of a Visual Basic project involves keeping track of several different files, and accessing these files individually within the Visual Basic environ​ment, as needed.

VISUAL BASIC ENVIRONMENT
· TITLE BAR

 The top line is called the titlebar.it includes the project name ,an icon that closes visual basic at the left,and icons that minimize the group of windows,change the size of the group,or close visual basic on the right.

· MENU BAR

 The second line is called the menubar.Selecting one of the choices(fils,edity,view,project,format,…)causes one of visual basic ‘s invidual features
· TOOLBAR
· The third line is called the Standard Toolbar.
· The icons on this line duplicate several of the more commonly used menu selections that are available via the drop-down menus accessed from the Menu Bar.

· For example, the Standard Toolbar contains icons that will open an existing project; save the current project; cut, copy and delete; undo the most recent changes; start, pause and end program execution; and add/delete windows from the current overall environment.

· All of these features can be accessed via drop-down menus. Hence, the toolbar icons do not offer any new or unique features, but their use is convenient, since the icon-based features can be selected with a single mouse click.

 Other toolbars (Debug, Edit and Form Editor) can be accessed by selecting Toolbars from the View

 menu. The Standard Toolbar can also be removed in this manner.

· FORM DESIGN AND PROJECT CONTAINER WINDOWS

· The Form Design Window is where the user interface is actually designed.

· This is accomplished by selecting the desired Control Icons from the Toolbox and placing them in the Form Design Window.

· Each control can then be moved (place the mouse over the icon and drag) or resized (activate the icon and drag one often small surrounding squares), and its properties can be reassigned as required

· The entire form (i.e., the entire Form Design Window) can be moved within the surrounding Project Con​tainer Window (by placing the mouse over the form and dragging), or it can be resized (by activating the mouse and then dragging one of the small surrounding squares). Both windows can also be closed, minimized, or resized by clicking on the appropriate icons in their respective Title Bars.

· TOOLBOX

· The Toolbox contains icons that represent commonly used controls, such as a label, text box, command-button, picture box, frame, check box, option button, file list box, and so on.

· Select a control from the Tool​box and place it in the current Form Design Window by double-clicking on the control icon (thus placing the control in the center of the window), or by clicking once on the control icon, then clicking on the desired loca​tion within the Form Design Window and dragging the mouse so that the control has the desired size.

· Once a control has been placed in the Form Design Window, the associated code (i.e., the associated Vis​ual Basic instructions) can be viewed or edited by double-clicking on the control.

· PROPERTIES WINDOW

· Each object has its own unique list of properties.

· The Properties Window allows you to assign or change the properties associated with a particular object (i.e., a particular form or control).

· To do so, active the object by clicking on it; then choose from the corresponding list of properties shown in the left column of the Properties Window.

· Once you select a prop​erty, the adjoining box in the right column may change its appearance, showing a drop-down menu so you can choose from a list of permissible values.

· PROJECT WINDOW

· The Project Window displays a hierarchical list of the files associated with a given project.

· These files repre​sent individual forms and modules.

· Can display a form or module within the Project Container Window by double-clicking on the corresponding icon within the Project Window.

· Can select either the Object View or the Code View by clicking on one of the two leftmost icons within the toolbar at the top of the Project Window.
· CODE EDITOR WINDOW

· Select Code View within the Project Window, or if you double-click on a control icon within the Form Design Window, the Code Editor Window will open, displaying the Visual Basic code associated with the cur​rently active form.
· The Code Editor Window containing two different event procedures
· The Form Layout Window allows you to specify the screen location of the forms within a project.

· To change the form location, simply drag the form icon to the desired position.

· IMMEDIATE WINDOW

· The Immediate Window is very useful when debugging a project.

· Whenever you enter a variable or expression within this window, the corresponding value will be shown immediately.

REPOSITIONING, RESIZING, DELETING, ADDING, AND DOCKING WINDOWS

· Any of the individual windows can be repositioned (by activating the window and then dragging it to the de​sired location), resized (by activating and then dragging an edge or comer), and deleted (by clicking on the X in the upper right comer).

· A window can be added by selecting the window name from the View menu.

· The interface may become messy if several windows have been moved and resized.

· When this happens, Visual Basic allows the windows to be returned to their orderly, pre assigned position. This is- called docking.
· To dock a window that has been moved from its pre assigned position, simply double-click on the win​dow's title bar.

· For any window, docking can be overridden by selecting Options/Docking from the Tools menu, and then selecting or deselecting the appropriate check boxes.

OPENING AN EXISTING VISUAL BASIC PROJECT
· Existing project can be accessed by locating the project name listed u Existing or the Recent tab within the New Project window or by locating the open File/Open Project.

· Once the project is opened, however, the Form Design Window may not be visible the Project Container Window.

· To access the Form Design Window, you may have to expand the Form within the Project Window and then select the desired form. Double-click on the icon to show the Form Design Window.

· Activating a form within the Project Container Window

SAVING A VISUAL BASIC PROJECT
· Saving a project can be tricky in Visual Basic because it involves saving multiple files.

· To save a new Visual Basic project for the first time, choose Save Project As from the File menu

 be prompted separately for a form name (i.e., the name of the frm file) and a project name the same

 name is given to both files.

· To save an updated version of a previously saved project, click on the Save Project button in the or select Save Project from the File menu.

· To save a previously saved project under a different name (this is the tricky part), you must save

 Separately under its new name.

· To execute a Visual Basic project, simply click on the Start button in the Toolbar, the Run menu.

· The execution can be temporarily suspended by clicking on the Break button, the Run menu.

· The execution of a paused project can then be resumed by clicking button, or by selecting Continue from the Run menu.

· To end the execution, simply click on the End button, or select End from the Run menu.

GETTING HELP
· Visual Basic includes many intricate concepts, predefined identifiers, detailed syntactic requirements, etc. ​more than you can remember at anyone time.

· Fortunately, Visual Basic also includes an excellent on-line help facility, which will answer most questions and provide detailed information, with examples, of various Visual Basic features.

· To access the help feature, press function key F1 or select Contents, Index or Search from the Help menu.

· The text box control is used to display information entered by the user at run time, or assigned to the Text property of the control at design or run time.

· The text box control should be used for editable text, although you can make it read-only by setting its Locked property to True, Text boxes also allow you to display multiple lines, to wrap text to the size of the control, and to add basic formatting.

VISUAL BASIC FUNDAMENTALS
NUMERIC CONSTANTS

· Numbers are referred to as numeric constants in Visual Basic.
· Most numeric constants are expressed as inte​gers (whole numbers that do not contain a decimal point or an exponent), long integers (similar to integers with an extended range), single-precision real quantities (numbers that include a decimal point, an exponent, or both), or double-precision real quantities (similar to single-precision real quantities with an extended range and greater precision).

· The following rules apply to numeric constants: Commas cannot appear anywhere in a numeric constant.

· A numeric constant may be preceded by a + or a - sign. The constant is understood to be positive if a sign does not appear.

· An integer constant occupies two bytes. It must fall within the range -32,768 to 32,767. It cannot contain either a decimal point or an exponent.

· A long integer constant occupies four bytes. It must fall within the range -2,147,483,648 to 2,147,483,647. It cannot contain either a decimal point or an exponent.

· A single-precision real constant occupies four bytes. It can include a decimal point and as many as seven significant figures. However, its magnitude cannot exceed approximately 3.4 x 1038.

· A single-precision real constant can include an exponent if desired.

· Exponential notation is similar to scientific notation, except that the base 10 is replaced by the letter E.

· The quantity 1.2 x 10-3 could be written as 1. 2E-3. the exponent itself can be either positive or negative, but it must be a whole num​ber; i.e., it cannot contain a decimal point.

· A double-precision real constant occupies eight bytes. It can include a decimal point and as many as fif​teen significant figures. However, its magnitude cannot exceed approximately 1.8 x 10308.

· A double-precision real constant can include an experiment if desired.

· Double-precision exponential no​tation is similar to scientific notation, except that the base 10 is replaced by the letter O.

· Thus, the quantity 1.6667 x 10-3 could be written as 1 .66670-3.

· The exponent itself can be either positive or negative, but it must be a whole number; i.e., it cannot contain a decimal point.

· All of the numeric constants discussed above are based upon the decimal (base 10) numbering system.

· Visual Basic also supports octal (base 8) and hexadecimal (base 16) numeric constants, though octal and hexa​decimal constants are rarely used by beginning programmers.

EXAMPLE
Several Visual Basic numeric constants are shown below. Note that each quantity (each row) can be written in several different ways.

	
0 +0 -0
	
	0.1 E+1
	10E-1

	-5280
	-5.28E+3
	-.528E4
	-52.8E2

STRING CONSTANTS

· A string constant is a sequence of characters (i.e., letters, numbers and certain special characters, such as +, -, /, *, =, $, ., etc.), enclosed in quotation marks.

· Blank spaces can be included within a string. A quotation mark can also be placed within a string, but it must be written as two adjacent quotation marks (see the last line in the example below).

· String constants are used to represent nonnumeric information, such as names, addresses, etc.

· There is no practical restriction on the maximum number of characters that can be included within a string constant.

· The maximum length of a string constant can be considered infinite. Several string constants are shown below.

EXAMPLE
"SANTA CLAUS"

"$19.95"

"X1 = "

"3730425"

VARIABLES
· A variable is a name that represents a numerical quantity, a string, or some other basic data item (e.g., a date, true/false condition, etc.).

· The following rules apply to the naming of variables: .

1. A variable name must begin with a letter. Additional characters may be letters or digits. Certain other char​acters may also be included, though the period and special data-typing characters (e.g., %, &, !, #, and $) are not permitted. In general, it is good programming practice to avoid the use of characters other than letters and digits.

2. A variable name cannot exceed 255 characters. As a practical matter, however, variable names rarely approach this size.

3. Visual Basic does not distinguish between uppercase and lowercase letters. Many programmers use upper​case letters as word separators within a -single variable name (e.g., FreezingPoint, TaxRate, etc.)

4. Visual Basic includes a number of reserved words (e.g~, Dim, If, Else, Select, Case, Do, etc.). These reserved words represent commands, function names, etc. They cannot be used as variable names.

EXAMPLE

Several variable names are shown below.

Area Counter

Radius CustomerName

UnpaidBalance

C3

xxmax Account_Number

DATA TYPES AND DATA DECLARATIONS
· Visual Basic supports all common data types, including Integer, Long (i.e., long integer), Single, Double and String. The language also supports other data types, such as Boolean, Byte, Currency and Date data, as well as Variant-type data (see below) and user-defined data types.

· The Dim statement is used to associate variables with specific data types. This process, which is common to all modem programming languages, is known as data declaration, or simply declaration.
· In general terms, The Dim statement is written as
Dim variable name 1 As data type I, variable name 2 As data type 2, etc.
EXAMPLE

Several variable declarations are shown below.

Dim Counter As Integer

Dim Area As Single

Dim Student Name As String

Dim StudentName As String * 30

Dim TaxRate As Single, Income As Double, Taxes As Double, Dependents As Integer

· The first line declares Counter to, be an integer-type variable, and the second line declares that Area is a single ​precision real variable.

· The third line declares Student Name to be a string variable of unspecified length; in the fourth line, however, Student Name is declared to be a string variable of fixed length, not exceeding 30 characters.

· Finally, the last line declares TaxRate to be a single-precision real variable, Income and Taxes as double-precision real variables, and Dependents as an integer variable.

· VARIANTS
· Visual Basic allows variables to be undeclared if the programmer so chooses.
· In such cases, the data type of the variable is determined implicitly by the value that is assigned to the variable. Such variables are referred to as Variant-type variables, or simply as variants.

· On the surface, the use of variants appears to simplify the program development process.

· This is a false perception, however, as the use of variants is computationally inefficient, and it compromises the clarity of a program.

· Good programming practice suggests that the use of variants be avoided. Use explicitly declared variables instead.

· NAMED CONSTANTS
· It is also possible to define named constants in Visual Basic.

· Named constants are similar to variables. How​ever, variables can be reassigned different values within a program, whereas named constants remain un​changed throughout a program.

· The Const statement is used to declare a named constant. This statement has the general form

Const constant name As data type = value

EXAMPLE

Here are some typical named constant declarations:

Canst TaxRate As Single = 0.28

Const Avogadro As Double = 6.02250+23

Const MaxCount As Integer = 100

· The first line declares TaxRate to be a single-precision real constant whose value is 0.28.

· The second line defines Avogadro's number as a double-precision real constant whose value is 6.0225 x 1023.

· The last line declares MaxCount as an integer constant whose value is 100.

Note that the values assigned to TaxRate, Avogadro and MaxCount will remain unchanged throughout the program.

· Suffixes

Rather than declaring a data type explicitly (using a Dim or Canst statement), a variable or named constant can be associated with a data type by adding a single-character suffix to the end of the variable/constant name. Sev​eral of the more commonly used suffixes are listed below.

EXAMPLE
Shown below are several variables whose data types are defined by suffixes.

	Variable
	Data Type

	Index%
	integer

	Counter&
	long integer

	TaxRate!
	single

	Ratio#
	double

	CustomerName$
	string

· The use of suffixes is derived from earlier versions of the Basic language, and is included in Visual Basic largely for purposes of consistency and backward compatibility.

· Modern programming practice encourages the use of explicit data type declarations rather than suffixes. Hence, we will not make use of suffixes elsewhere in this book.

· USER-DEFINED DATA TYPES

· It is sometimes convenient to define a multi component data type whose individual components are standard data items (i.e., integers, single-precision real, strings, etc.).

· Visual Basic allows such data types to be defined and it permits variables to be associated with these data types. Moreover, the components (called members) t within such variables can easily be accessed individually.

 In general terms, the data type definition is written as

 Type data type name

 member name 1 As data type 1

 member name 2 As data type 2

 End Type
To associate a variable with a user-defined data type, we simply write

Dim variable name As user-defined data type

The components (members) of a user-defined variable can be accessed individually as

variable name. member name

· These components can be used in the same manner as ordinary variables.Thus, they can appear within expres​sions, and they can be assigned values.

EXAMPLE

Here is a typical user-defined data type. This data type might be useful in a customer billing application.

Type Customer CustomerName As String AcctNo As Integer Balance As Single

End Type

Once the data type has been defined, we can declare one or more variables of this data type, as follows.

Dim OldCustomer As Customer, NewCustomer As Customer

We can then refer to the individual variable members as

OldCustomer.CustomerName

NewCustomer.CustomerName

OldCustomer.AcctNo

NewCustomer.AcctNo

OldCustomer.Balance

NewCustomer.Balance

and so on.

OPERATORS AND EXPRESSIONS
· Special symbols, called arithmetic operators, are used to indicate arithmetic operations such as addition, sub​traction, multiplication, division and exponentiation.
· These operators are used to connect numeric constants and numeric variabies, thus forming arithmetic expressions.

The standard arithmetic operators are

Addition -> + (plus sign)

Subtraction - > - (minus sign)

Multiplication -> * (asterisk)
Division - > / (slash)

Exponentiation - > ^ (caret, or upward-pointing arrow)

· Visual Basic also includes two additional arithmetic operators:

 Integer division : \ (backward slash)

 Integer remainder : Mod

· In integer division, each of the two given numbers is first rounded to an integer; the division is then carried out on the rounded values and the resulting quotient is truncated to an integer.

· The integer remainder operation (Mod) provides the remainder resulting from an integer division.

ARITHMETIC EXPRES​SION
 When arithmetic operators appear within an arithmetic expression, the indicated operations are carried out on the individual terms within the expression, resulting in a single numerical value. Thus, an arithmetic expres​sion represents a specific numerical quantity.

EXAMPLE

Several arithmetic expressions are presented below.

2*j+k-1

first + second - third

2 * (j + k - 1)

(a . 2 + b . 2) . 0.5

(5 1 9) * (F - 32)

 b . 2 - (4 * a * c)

· Each expression represents a numerical quantity. Thus, if the variables a, b and c represent the quantities 2, 5 and 3, re​spectively, the expression a + b - c will represent the quantity 4.

EXAMPLE

The results of several ordinary division, integer division and integer remainder operations are shown below.

13/5 = 2.6

8.6/2.7 = 3.185185

13\5 = 2 8.6\2.7 = 3

13 Mod 5 = 3 8.6 Mod 2.7 = 0

8.3/2.7 = 3.074074

8.3\2.7 = 2 8.3\2.2 = 4

8.3 Mod 2.7 = 2 8.3 Mod 2.2 = 0

8.3/2.2 = 3.772727

SPECIAL RULES CONCERNING ARITHMETIC EXPRESSIONS

Special problems can arise if an arithmetic expression is not correctly written. Such problems can be avoided by remembering the following rules.

1. Preceding a variable by a minus sign is equivalent to multiplication by -1.

2. Except for the condition just described, operations cannot be implied.

3. In an expression involving exponentiation, a negative quantity can be raised to a power only if the expo​nent is an integer.

· To understand this restriction, we must see how expo​nentiation is carried out.

· If the exponent is an integer quantity, the quantity to be exponentiated is multi​plied by itself an appropriate number of times.

· But if the exponent is not an integer quantity, Visual Basic computes the logarithm of the quantity being exponentiated, multiplies this logarithm by the exponent, and then computes the antilog.

· Since the logarithm of a-negative number is not defined, we see that the opera​tion is invalid if the quantity being exponentiated is negative.

EXAMPLE

Consider the arithmetic expression (C1 + c2) ~ 3.

 - The quantity represented by (c1 + c2) is multiplied by itself twice, thus forming the cubic expression.

 - It does not matter whether the quantity (c 1 + c2) is positive or negative.

 - On the other hand, the arithmetic expression (b ~ 2 - 4 * a * c) ~ .5 will be valid only if (b ~ 2 - 4 * a * c)

 represents a positive quantity.

 - Finally, consider what happens in the arithmetic expression a ~ n when either a or n is zero.

 - If n has a value of zero, then a ~ n will be assigned a value of 1, regardless of the value of a.

 - If a has a value of zero and n is nonzero, however, then a ~ n will be evaluated as zero.

STRING EXPRESSIONS

· Numerical operations cannot be performed on string constants or string variables.

· However, strings and string variables can be concatenated (i.e., combined, one behind the other).

· In Visual Basic we use either the amper​sand (&) or the plus sign (+) as a string concatenation operator (the ampersand is favored).

EXAMPLE

 - Suppose the string variables str1 and str2 have been assigned the following values:

Str1 = "TEN"

Str2 = "THOUSAND"

Then the string expression

Str1 & " " & str2 & " DOLLARS"

will cause the three individual strings to be concatenated, resulting in the single string

TEN THOUSAND DOLLARS

 - It can also be written as the string expression

Str1 + " " + str2 + " DOLLARS"

ASSIGNING VALUES TO VARIABLES

· The equal sign (=) is used to assign a numeric or string value to a variable.

· The general form is

Variable = Expression

 where the value of the expression on the right is assigned to the variable on the left. Note that the

 expression can consist of a constant, a single variable, or a more complex expression.

EXAMPLE

 - Shown below are several unrelated assignment statements.

x = 12.5

Cmax = X

Area = 3.141593 * Radius A 2

Label = "Name: "

Str = FirstStr + LastStr

In each statement, the value of the expression on the right of the equal sign is assigned to the variable on the left.

· If the variable on the left of the equal sign and the expression on the right differ in their respective data types, Visual Basic will attempt to convert from the data type of the expression to the data type of the variable.

· Note that this may result in a data loss in such situations.

· For example, if the expression on the right is a real quantity and the variable on the left is an integer, the fractional part of the expression will be dropped when it is assigned to the integer variable.

· Moreover, some types of mixed-data-type assignments are incompatible and therefore not allowed.

· For example, a string expression cannot be assigned to a numeric variable.

· On the other hand, there are certain kinds of as​signments that would make no sense if viewed as algebraic equations.

EXAMPLE

- Consider the following assignment statement.

 J=J+1.
· The assignment term J = J + 1 obviously does not correspond to an algebraic equation, since the equation
 j = j + I makes no sense.
· The assign​ment term is entirely logical if we interpret it as follows: add I to the value originally represented by the variable J, and assign this new value to J.
· The new value of J will replace the old value. This operation is known as incrementing.
DISPLAYING OUTPUT - THE Print STATEMENT

· The Print statement is used to display information within the currently active form, beginning in the upper left comer.

· This statement is not used often in Visual Basic projects.

· However, it is very convenient for displaying the results of very simple programs, and it provides a way to view the results of small program segments during the development of a large project.

· The Print statement consists of the keyword Print, followed by a list of output items.

· The output items can be numeric constants, string constants, or expressions.

· Successive items must be separated either by commas or semicolons.

· Commas result in wide separation between data items; semicolons result in less separation.

· Each new Print statement will begin a new line of output.

· An empty Print statement will result in a blank line.

EXAMPLE

- A Visual Basic program contains the following statements.

Dim Student As String, X As Integer, C1 As Single, C2 As Single

Student = "Aaron" X = 39

C1 = 7

C2 = 11

Print "Name:", Student, X, (C1 + C2) I 2

 - The Print statement will generate the following line of output:

Name: Aaron 39 9

LIBRARY FUNCTIONS
· Visual Basic contains numerous library functions that provide a quick and easy way to carry out many mathe​matical operations, manipulate strings, and perform various logical operations.

· These library functions are prewritten routines that are included as an integral part of the language.

· They may be used in place of variables within an expression or a statement.

· Table presents several commonly used library functions.

· A library function is accessed simply by stating its name, followed by whatever information must be sup​plied to the function, enclosed in parentheses.

· A numeric quantity or string that is passed to a function in this manner is called an argument.
· Once the library function has been accessed, the desired operation will be car​ried out automatically.

· The function will then return the desired value. Commonly Used Library Functions

	Function

y = Abs(x)
Return the absolute value of x; y = ~I. = Clnt(x)

Convert x to the appropriate data type (CDbl converts to
double, Clnt to integer, CSng to single, etc.).

y = Chr(x)

Return the character whose numerically encoded
value is x. For example, in the ASCII character set, Chr(65) = "A".

y = Cos(x)

Return the cosine of x (x must be in radians).

y = Date

Return the current system date.

y = Exp(x)

Return the value of e to the x power; y = eX.

Y = Format (x, "frmt str")

Return the value of x in a format designated by "frmt str" (format string). Note that the format string may take on several different forms.

y = Int(x)

Return the largest integer that algebraically does not exceed x. For example, Int (-1 .9) = - 2.

y = Lcase(x)

Return the lowercase equivalent of x.

y = Left(x, n)

Return the leftmost n characters of the string x.

y = Len(x)

Return the length (number of characters) of x.

y = Log(x)

Return the natural logarithm of x; y = loge<x), x> O.
Y = Mid(x, n1, n2)

Return the middle n2 characters of the string x, beginning with character number nl.

y = Right(x, n)
Return the rightmost n characters of the string x.

y = Rnd

Return a random number, uniformly distributed within the interval O:S;y <1.

y = Sgn(x)

Determine the sign of x; (y = + I if x is positive, y= 0ifx = 0, a'1d y = -I if x is negative).

y = Sin(x)
Return the sine of x (x must be in radians).

y = Sqr(x)
Return the square root of x; y = E , x> O.

y = Str(x)

Return a string whose characters comprise the value of x. For example, Str(-2.50) = "-2.50".

y = Tan(x)

Return the tangent of x (x must be in radians).

y = Time
Return the current system time.

y = Ucase(x)
Return the uppercase equivalent of x.

y = Val(x)

Return a numeric value corresponding to the string x, providing x has the appearance of a number.
For example. Val("-2.50") = -2.5.

Note: The symbol e represents the base of the natural (Naperian) system of logarithms. It is an irrational number whose approximate value is 2.718282.

EXAMPLE

 - To calculate the square root of the value represented by the expression Area / 3.141593, using the library function Sqr.

To do so, we could Write Radius = Sqr(Area / 3.141593)

Notice that the argument of Sqr is the numeric expression (Area / 3.141593).

Of course, we could also have written Radius = (Area / 3.1415931 A 0.5

· The library function is not required in this situation - it is merely used for convenience.

· In many situations,use of library functions may be only straightforward way to carry out the calculation.

· The Format function

- The Format function allows a data item to be displayed in many different forms.

	Expression
	Result
	

	Print Format(17.66698, "##.##")
	17.67
	

	Print Format(7.66698, "##.##")
	7.67
	(note the leading blank space)

	Print Format(0.66667, "##.###")
	.667
	(note the leading blank spaces)

	Print Format(0.66667, "#0.###")
	0.667
	(note the leading blank space)

	Print Format(12345, "##,###")
	12,345
	

	Print Format(12345, "##,###.00")
	12,345.00
	

	Print Format("Basic", "&&&&&&&&")
	Basic
	

	Print Format("Basic", "@@@@@@@@")
	Basic
	(note the leading blank spaces)

	Print Format (Now, "mm-dd-yyyy")
	1-20-2001
	

	Print Format (Now, "mm/dd/yy")
	1/20/01
	

	Print Format(Now, "hh:mm:ss am/pm")
	04:47:51 pm
	

· Note that Now is a predefined Visual Basic variable that represents the current date and time, as determined by the computer's real-time clock.

· The use of library functions is not confined to assignment statements - a library function may appear any​where in an expression in place of a constant or a variable.

· Moreover, the arguments need not be constants or simple variables - expressions can be used as valid function arguments, provided they are of the proper data type.

PROGRAM COMMENTS
· Comments provide a convenient means to document a program (i.e., to provide a program heading, to identify important variables, to distinguish between major logical segments of a program, to explain complicated logic, etc,).

· A comment consists of a single apostrophe ('), followed by a textual message.

· Comments can be inserted anywhere in a VB program. They have no effect on the program execution.

EXAMPLE

 - A Visual Basic program includes the following statements:

 'Program to Calculate the Roots of a Quadratic Equation

 X1 = (-b + root) / (2 * a) 'calculate the first root

 X2 = (-b - root) / (2 * a) 'calculate the second root.

 Print X1, X2

· The entire first line is a comment, which serves as a program heading.

· On the other hand, the last two lines each have a comment attached at the end of an executable statement. Note that each comment begins with a single apostrophe.

BRANCHING AND LOOPING

INTRODUCTION

 Control Statements are used to control the flow of program's execution. Visual Basic supports control structures such as if... Then, if...Then...Else, Select...Case, and Loop structures such as Do While...Loop, While...Wend, For...Next etc method. Branch is a point at which program must make a choice. With these data structures, it is now possible to make programs that can have multiple outcomes. Another name for this concept is conditional clauses. Conditional clauses are blocks of code that will only execute if a particular expression (the condition) is true.

BRANCHING AND LOOPING

 - Branching occurs when the program makes a decision. The flow of execution follows a particular

 branch.

 - Loops are control structures used to repeat a given section of code a certain number of times or until a

 particular condition is met.
RELATIONAL OPERATORS AND LOGICAL EXPRESSIONS

OPERATORS IN VISUAL BASIC

· The operators are infix and take two arguments: arg1 operator arg2 except for unary plus and minus.

· ARITHMETICAL OPERATORS
	Operators
	Description
	Example
	Result

	+
	Add
	5+5
	10

	-
	Substract
	10-5
	5

	\
	Integer Division/
Divide
	25/5 \ 20\3
	5\ 6

	*
	Multiply
	5*4
	20

	^
	Exponent (power of)
	3^3
	27

	Mod 6
	Mod
	Remainder of division
20
	2

	&
	String concatenation
	"George"&" "&"Bush
	""George Bush"

Order of operations
· Exponentiation (^)

· Multiplication and normal division (* and /)

· Integer division (\)

· Mod (Mod)

· Addition and subtraction (+,-)

· RELATIONAL OPERATORS
Operators
Description
Example
Result
>
Greater than
10>8
True

<
Less than
10<8
False

>=
Greater than or equal to
20>=10
True

<=
Less than or equal to
10<=20
True

<>
Not Equal to
5<>4
True

=
Equal to
5=7
False

· LOGICAL OPERATORS
Operators
Description
OR
Operation will be true if either of the operands is true

AND
Operation will be true only if both the operands are true

 COMPARISON OPERATORS
· These operators, composed of <, > and =, are use to decide whether one value is smaller than, larger than, or equal to another.

For example:

Dim i

 i = 50

 If i < 0 Then

 MsgBox "i is less than 0"

 ElseIf i <= 100 And i >= 0 Then

 MsgBox "i is less than or equal to one hundred and greater than or equal to 0"

 ElseIf i > 100 And i < 200 Then

 MsgBox "i is greater than one hundred less than 200"

 Else

 MsgBox "i is greater than or equal to 200"

 End if

BRANCHING WITH IF – THEN & IF-THEN-ELSE BLOCKS

· IF…THEN SELECTION STRUCTURE
The If...Then selection structure performs an indicated action only when the condition is True; otherwise the action is skipped.

If...Then statements are some of the most basic statements in all of programming.
Syntax

If...Then selection

If <condition> Then

Statement

 End If

e.g.: If average>75 Then
 txtGrade.Text = "A"
 End If
IF...THEN...ELSE SELECTION STRUCTURE

The If...Then...Else selection structure allows the programmer to specify that a different action is to be performed when the condition is True than when the condition is False.

The If..Then..Else statement is the simplest of the conditional statements.
They are also called branches, as when the program arrives at an "If" statement during its execution, control will "branch" off into one of two or more "directions".
Syntax:

· If...Then...Else selection

· If <condition > Then
statements
Else
statements
End If

e.g.:

 If average>50 Then
txtGrade.Text = "Pass"
Else
txtGrade.Text = "Fail"
End If
NESTED IF...THEN...ELSE SELECTION STRUCTURE

Nested If...Then...Else selection structures test for multiple cases by placing If...Then...Else selection structures inside If...Then...Else structures.

If the original condition is met, then all the code within the first statement is executed.
The optional Else section specifies an alternative statement that will be executed if the condition is false.
Syntax
 Nested If...Then...Else selection structure

Can use Nested If either of the methods as shown above

Method 1
If < condition 1 > Then
statements
ElseIf < condition 2 > Then
statements
ElseIf < condition 3 > Then
statements
Else
Statements
End If

Method 2
If < condition 1 > Then
statements
Else
If < condition 2 > Then
statements
Else
If < condition 3 > Then
statements
Else
Statements
End If
End If
EndIf

e.g.: Assume you have to find the grade using nested if and display in a text box

If average > 75 Then
txtGrade.Text = "A"
ElseIf average > 65 Then
txtGrade.Text = "B"
ElseIf average > 55 Then
txtGrade.text = "C"
ElseIf average > 45 Then
txtGrade.Text = "S"
Else
txtGrade.Text = "F"
End If
SELECTION : SELECT CASE

Select...Case structure is an alternative to If...Then...ElseIf for selectively executing a single block of statements from among multiple block of statements.

Select...case is more convenient to use than the If...Else...End If.

Syntax

· Select...Case selection structure

· Select Case Index
Case 0
Statements
Case 1
Statements
End Select
e.g.:
Assume you have to find the grade using select...case and display in the text box

Dim average as Integer
average = txtAverage.Text

Select Case average
Case 100 To 75
txtGrade.Text ="A"
Case 74 To 65
txtGrade.Text ="B"
Case 64 To 55
txtGrade.Text ="C"

Case 54 To 45
txtGrade.Text ="S"
Case 44 To 0
txtGrade.Text ="F"
Case Else
MsgBox "Invalid average marks"
End Select
LOOPING WITH FOR – NEXT

Loops are a very powerful control structures used to repeat a given section of code a certain number of times or until a particular condition is met.Simply, loop is referred to as a programming statement which allow contunual running of the given command until when the certain condition is actually achieved or until escape is pressed.

Visual Basic has two main types of loops: for..next loops and do loops.

The For...Next Loop is a way to make loops in Visual Basic. For...Next repetition structure handles all the details of counter-controlled repetition.

The syntax of a For..Next loop has three components: a counter, a range, and a step.
Eg:
Dim x As Integer
For x = 1 To 50
Print x
Next

Eg:
In order to count the numbers from 1 yo 50 in steps of 2, the following loop can be used
For x = 1 To 50 Step 2
Print x
Next

Eg:

The following loop counts numbers as 1, 3, 5, 7..etc
The above coding will display numbers vertically on the form. In order to display numbers horizontally the following method can be used.
For x = 1 To 50 Step 2
Print x & Space$ (2);
Next

To increase the space between the numbers increase the value inside the brackets after the & Space$.

DO – LOOP

- A repetition structure allows the programmer to that an action is to be repeated until given condition is true.

 - Do loops are a bit more flexible than For loops, but should generally only be used when neccesary.

 - Do loops come in the following formats:

· Do while

· Do until

· Loop while

· Loop until

While loops (both do while and loop while) will continue to execute as long as a certain conditional is true

An Until loop will loop as long as a certain condition is false.

The only difference between putting either While or Until in the Do section or the Loop section, is that Do checks when the loop starts, and Loop check when the loops ends.

DO WHILE... LOOP STATEMENT [image: image4.png]

[image: image5.png]

[image: image6.png]

The Do While...Loop is used to execute statements until a certain condition is met.

A variable number is initialized to 1 and then the Do While Loop starts.

First, the condition is tested; if condition is True, then the statements are executed.

 When it gets to the Loop it goes back to the Do and tests condition again.

If condition is False on the first pass, the statements are never executed.

Eg:

The following Do Loop counts from 1 to 100.
Dim number As Integer
number = 1
Do While number <= 100
number = number + 1
Loop
· DO...LOOP WHILE STATEMENT

The Do...Loop While statement first executes the statements and then test the condition after each execution. The following program block illustrates the structure:
Eg:
Dim number As Long
number = 0
Do
number = number + 1
Loop While number < 201

The programs executes the statements between Do and Loop While structure in any case. Then it determines whether the counter is less than 501. If so, the program again executes the statements between Do and Loop While else exits the Loop.

LOOP WITH CONDITION IN THE MIDDLE:DO..EXIT DO..LOOP
Used to make a calculation and exit the loop when a certain criterion is met.

when the criterion is not met there is something else to be done. In Such cases use a loop where the exit condition is in the middle.

Eg.
Do
 X = Calculate_Something If X > 10 then
 Exit Do
 End If
 Do_Something (X)
Loop
DO UNTIL...LOOP STATEMENT

Unlike the Do While...Loop and While...Wend repetition structures, the Do Until... Loop structure tests a condition first. Statements in the body of a Do Until...Loop are executed repeatedly as long as the loop-continuation test evaluates to False.

Eg.
Dim number As Long
number=0
Do Until number > 1000
number = number + 1
Print number
Loop
Numbers between 1 to 1000 will be displayed on the form as soon as you click on the command button.

DO...LOOP UNTIL STATEMENT

This loop has a condition at the end and the statements are repeated until the condition is met.

Since the check is at the end the statements are at least executed once.

Eg.
Do
 X = Calculate_Something
Loop Until X > 5

WHILE... WEND STATEMENT

 - A While...Wend statement behaves like the Do While...Loop statement.

While...Loop is used to execute statements until a certain condition is met.

Eg.

The following While...Wend counts from 1 to 100
Dim number As Integer
number = 1
While number <=100
number = number + 1
Wend
STOP STATEMENT

- Used to terminate to the execution at any point in the program. The statement simply consists of the Keyword Stop un the Program. It may Appear in any part of the program except at the very end.

Eg. Do
 X = Calculate_Somethingn If X > 10 then
 stop End If
 Do_Something (X)
Loop

UNIT-II

Introduction To Visual Basic Control Fundamentals:
 A control is an object that can be drawn on a Form object to enable or enhance user interaction with an application. Controls have properties that define aspects their appearance, such as position, size and color, and aspects of their behavior, such as their response to the user input. They can respond to events initiated by the user or set off by the system. Methods can be used to manipulate controls from code.

CONTROL TOOLS
 - The Visual Basic Toolbox contains a collection of control tools.

 - Controls, together with Customized menus, allow us to build a broad variety of graphical user

 Interfaces.

 - Standard tool box consist of 21 controls.

[image: image7.png]Pointer Picture Box

Label Text Box
Frame Command Button
X
: |
Gheck Box B Option Button
AR
' Jes FET
Gombo Box \ Sie / List Box
Ee
Horizontal Secroll Bar au g Vertical Seroll Bar
/ &=~
Y \\
Timer o= Drive List Box
L]
@
Directory List Box File List Box
Shape (Drawing) Line (Drawing)
Image Box Data
OLE Container

Fig. 4.1 The Visual Basic toolbox

BRIEF DESCRIPTION OF EACH CONTROL TOOL:

· CHECK BOX

· Provides a means of specifying a Yes/No response.

· Within a group of check boxes, any number of boxes can be checked, including none.

· COMBO BOX

· Combines the capabilities of a text box and a list box.

· It provides a collection of text items, one of which may be selected from the list at any time during program execution.

· Text items can be assigned initially, or they can be assigned during program execution. In addition, the user can enter a text; item at any time during program execution.

· COMMAND BUTTON

 - Provides a means of initiating an event action by the user clicking on the button.

· DATA

 - Provides a means of displaying information from an existing database.

· DIRECTORY LIST BOX

 - Provides a means of selecting paths and directories (folders) within the current drive.

· DRIVE LIST BOX

 - Provides a means of selecting among existing drives.

· FILE LIST BOX

 - Provides a means of selecting files within the current directory.

· FRAME
· Provides a container for other controls.

· It is usually used to contain a group of option buttons, check boxes or graphical shapes.
.

· HORIZONTAL SCROLL BAR

 - Allows horizontal scroll bar to be added to a control .

· IMAGE BOX

· Used to display graphical objects, and to initiate event actions.

· An Image Box is similar to a Picture Box.

· It redraws faster and can be stretched, though it has fewer properties than a Picture Box.

· LABEL

· Used to display text on a form.

· The Caption cannot be reassigned during program execution.

· LINE

 - Used to draw straight-line segments within forms. (See also the Shape tool description.)

· LIST BOX

· Provides a collection of text items.

· One text item may be selected from the list at any time during program exe​cution.

· Text items can be assigned initially, or they can be assigned during program execution.

 - User cannot enter text items to a list box during program execution.

 (Note that a combo box combines the features of a list box and a text box).

· OLE CONTAINER

 - Allows a data object to be transferred from another Windows application and embedded within the

 Visual Ba​sic application.

· OPTION BUTTON

· Provides a means of selecting one of several different options

· Within a group of option buttons, one and only one can be selected.

· PICTURE BOX

· Used to display graphical objects or text, and to initiate event actions.

· Picture Box is similar to an Image Box.

· It has more properties than an Image Box, though it redraws slower and cannot be stretched.

· POINTER

· The pointer is not really a control tool, in the true sense of the word.

· When the pointer is active, the mouse can be used to position and resize other controls on the design form, and to double-click on the controls, resulting in a display of the associated Visual Basic code.

· SHAPE

 - Used to draw circles, ellipses, squares and rectangles within forms, frames or picture boxes

· TEXT BOX

· Provides a means of entering and displaying text.

· The text can be assigned initially, it can be reassigned during program execution, or it can be entered by the user during program execution.

· TIMER

· Allows events to occur repeatedly at specified time intervals.

· VERTICAL SCROLL BAR

 - Allows a vertical scroll bar to be added to a control
CONTROL TOOL CATEGORIES

 The control tools can be grouped into the following overall categories. Some control tools have

 Multiple uses and are not restricted to the categories listed below.

1. Entering Text
· Text Box

· Combo Box

2. Drawing

· Line Button

· Shape Button

3. Displaying Text Label

· Text Box

· List Box

· Combo Box

4. Selecting Among Alternatives
· Check Box

· Option Button

· Frame

· List Box

5. Displaying Graphics

· Image Box

· Picture Box

· Frame

6. Viewing Windows

· Frame

· Horizontal Scroll Bar

· Vertical Scroll Bar

7. Managing Files

· File List Box

· Drive List Box

· Directory List Box

8. .Accessing Existing Data
· Data

9. Initiating Events

· Command Button

10. Linking with Other Objects

· OLE

11. Executing Timed Events

· Timer

WORKING WITH CONTROLS

 A control can be added to the Form Design Window two different ways:

1. By clicking on the desired control tool within the Toolbox, then clicking on the control's location

Within the Form Design Window.

 2. By double-clicking on the desired control tool within the Toolbox, automatically placing the control

 at the center of the Form Design Window.
.

· A control can be relocated within the Form Design Window by dragging the control to its desired location (hold down the left mouse button and drag).
.

· A control can be resized within the Form Design Window by dragging one of its edges or corners.

· A control can be removed from the Form Design Window by highlighting the control (i.e., by clicking on it) and then pressing the Delete key.
.

NAMING FORMS AND CONTROLS
 - When object is added to the Form Design Window, default name is automatically assigned to that Object.

· Each name includes a generic identifier (Form, List, Text, etc.) that identifies the type of object, followed by a number that identifies the order in which order particular object type has been added to the Form Design Window.

· Thus, List1 is the name of the first list box added to the Form Design Window; List2 is the name of the second list box, and so on.

· The default names work well for simple applications.

· For more complicated applications, its preferable to assign different names that suggest the purpose of each object.

· Microsoft suggests that such programmer-assigned names include a three-letter prefix suggesting the type of object.

· Microsoft recommends the following prefixes for programmer- defined object names:

	Obiect
	Prefix
	Obiect
	Prefix

	Combo Box
	cbo
	Label
	Ibl

	Check Box
	chk
	Line
	lin

	Command Button
	cmd
	List Box
	1st

	Data
	dat
	Menu
	mnu

	Directory List Box
	Dir
	OLE
	ole

	Drive List Box
	drv
	Option Button
	opt

	File List Box
	Fil
	Picture Box
	pic

	Frame
	Fra
	Shape
	shp

	Form
	frm
	Text Box
	txt

	Horizontal Scroll Bar
	hsb
	Timer
	tmr

	Image Box
	img
	Vertical Scroll Bar
	vsb

ASSIGNING PROPERTY VALUES TO FORMS AND CONTROLS
 - The properties associated with each object type are unique, though some are common to many different

 Object types.

· Moreover, each object will have a unique set of values assigned to its properties. These values may be as​signed at design time or at run time .

· Design-time assignments :
- Made by selecting a property from the list of properties shown in the proper​ties window

- Choosing an appropriate value from the adjoining list of values or entering a value from the

 keyboard.

- These property values will apply when the application first begins to run.

· Run-time assignments :
 - Carried out using visual basic assignment commands

 Object - name.property = value
 - Object name refers to name of form or control, property refers to the associated property name,

 -_Value refers to an assignable item, such as a number or a string.
EXECUTING COMMANDS (EVENT PROCEDURES AND COMMAND BUTTONS)
 - An event procedure is an independent group of commands that is executed whenever an "event" occurs

 during program execution.

 - Typically, an event occurs when the user takes some action, such as clicking on a control icon, or dragging

 an icon to another location. Visual Basic controls have ,event proce​dures associated with them.

 - Each event procedure begins with a Sub statement Private Sub Command1_Click()

 And Ends with an End Sub statement.

 - Between the Sub and End Sub statements is a group of instructions.

 - The parentheses in the Sub statement may contain arguments - special variables that are used to transfer

 Informa​tion between the event procedure and the "calling" routine

 - Command buttons are often used to execute Visual Basic event procedures.

 - When the user clicks on a command button during program execution, the statements within the

 Corresponding event procedure are car​ried out.

EXAMPLE:

A typical event procedure is shown below

:

Private Sub Command1_Click ()

Labe11.Caption = "Hello" & Text1.Text & "I Welcome to Visual Basic."

 Labe11.BorderStyle = 1

 Labe11.Visible = True

End Sub

- To enter an event procedure

· Double-click on the appropriate control within the Form Design Window
· Click once on the command button (to activate it), and then select the Code Editor by . clicking on the leftmost button within the Project Window toolbar
· Then enter the re​quired Visual Basic commands within the corresponding event procedure

· The Code Editor is used to enter an event procedure and associate that event procedure with a command button.

DISPLAYING OUTPUT DATA (LABELS AND TEXT BOXES)
 - The most straightforward way to display output data is with a label or a text box.

 - A label can only display out​put data, though a text box can accept input data as well as display output

 Data.

 - Both of these controls process information in the form of a string.

 - Numeric values can easily be converted to strings via the Str function

 - To display output using a label, the basic idea is to assign a string containing the desired output

 Informa​tion to the label's Caption property.

 - When displaying output using a text box, a string containing the desired output information is assigned

 to the text box's Text property.
EXAMPLE - CURRENT DATE AND TIME
· Create a project that displays the current date and time.

· Use of the special Vis​ual Basic variable Now, and the Format library function.
· Add the following two assignment statements to the first event procedure:

 Text1.Text = Format (Now, "dddd, mmmm d, yyyy")

 Text2.Text = Format(Now, "hh:mm AM/PM")
· In both of these assignment statements, the predefined variable Now represents the current date and time.

· The term "dddd, mmmm d, yyyy" is a format string, which indicates how the information represented by Now will appear.

· The first command formats the value of Now & it represents the current day and date.

· The second command formats the value of Now & it represents the current time, represented as hours and minutes, followed by AM or PM

ENTERING INPUT DATA (TEXT BOXES)
 - Input data is generally entered through a text box.

 - The user enters a string from the keyboard when the program is executed.

 - The string is automatically assigned to the text box's text property.

 - If the string repre​sents a number, it can be converted to an actual numerical value by means of the Val

 function.

SELECTING MULTIPLE FEATURES (CHECK BOXES)
 - Many programs allow the user to select among many different options.

 - The user may select one option, several different options, or no options at all.

 - Check boxes are used for this purpose. Each option has its own check box.

 - A check box is "checked" (i.e., selected) by clicking on it, or assigning its Value property a value of 1.

 - For each check box, an If-Then-Else block can be written that tests the value of the check box's

 Value property, and an appropriate action taken if the value equals I.

 - The Value property can also be assigned 0 to "uncheck" the check box, or 3 to "gray-out"

 (i.e., deactivate) the check box.

SELECTING EXCLUSIVE ALTERNATIVES (OPTION BUTTONS AND FRAMES)

 - Option buttons, like check boxes, allow the user to select among several different alternatives.

 - Check boxes allow the selection of any number of alternatives (including none), whereas option

 buttons allow the Selection of one and only one alternative within an option-button group.

 - Normally, all of the option buttons within a form comprise a single option-button group.

 - To select an option button, the user must click on the button, causing a small dot to appear within the

 outer circle. The value of the option button's Value property will then be set to True.

 - The dot will simulta​neously disappear from any previously selected button (since only one option button

 can be selected at any time), and its Value property will be assigned the value False.

 - An event procedure containing an If-Then-Else block can then determine which button has been

 selected, and the appropriate Action taken.

SELECTING FROM A LIST (LIST BOXES AND COMBO BOXES)

 A LIST BOX
 - A list box offers another approach to selecting among several different alternatives.

 - Each alternative is identified as a single entry within the list.

 - When the program is executed, clicking on a list entry causes the value of the list index to be assigned

 to the Listlndex property.

 - The list index is an integer whose value ranges from 0 to n- 1, where n is the number of entries within

 the list.

 - The first item will correspond to index number 0, the second will correspond to index number 1, and so

 on.

 - An If-Then-Else block or a Select Case structure can then be used to carry out the desired action.

 THE COMBO BOX
 - The Control Associated with a list box is the combo box, which is a single control combining a text box

 and a list box.

 - The list box component behaves as any other list box.

 - The text box component can be used either to enter an input string or to display an output string (e.g., a

 label or a heading for the list box).

- Initial list entries can be entered as strings in the same manner as other control properties.

- Press Ctrl-Enter at the end of each list entry, in order to drop down to the next line.

- List entries can be changed (i.e., reassigned) or added during program execution using the Addltem

 method or the List function.

 EXAMPLE

 List1.AddItem("Red")

 List1.AddItem("White")

 List1.AddItem("Blue") etc

 or

 List1.List(Q) = "Red"

 List1.List(1) = "White"

 List1.List(2) = "Blue" etc.

 - These list modification instructions will appear within a Form_LoadO event procedure.

- The ListCount and Listlndex properties are also useful in many situations.

- ListCount represents the number of entries within the list (beginning with I, not 0). It is often used as a

 stopping condition for a looping struc​ture.

ASSIGNING PROPERTIES COLLEC.TIVELY (THE With BLOCK)

- When assigning values to several properties within the same object at run time, it is often convenient to do so

 using a With block.

· This construct allows the object name to be specified only once, followed by each of the property assignments.

· The use of With blocks is logically more concise than individual, independent property assignments.

· It may also be computationally more efficient, particularly if the property references involve sev​eral layers (e.g.,form.object.property).

- The period (.) preceedes each property specification.
The general form of the With block is

With object name

 . property J = . .
 . property 2 =

 . property n =

End With

EXAMPLE
Private Sub Form_LOad()

With Label1

.Caption = "Say Hello, in . . .

.Font.Size = 10

End With

With combo

 .List(O) = "French"

 .List(1) = "German"

 .List(2) = "Hawaiian"

 .List(3) = "Hebrew"

 .Text = "Language. . . .Font.Size = 10

End With

GENERATING ERROR MESSAGES (THE MsgBox FUNCTION)

 - Most comprehensive projects include error traps.

 - It detect inappropriate input data or improper conditions that arise during the course of the computation.

 - Some examples are detecting a negative value for an input pa​rameter that is required to be positive, and

 trapping an attempt to calculate the square root of a negative number. Such conditions can usually be

 detected using If-Then or If-Then-Else.

- When an error of this type has been detected, an error message is usually displayed and the computation is

 either suspended or terminated. The error message informs the user that an error has occurred, and may

 suggest that the 'user take corrective action.

- The MsgBox function offers a convenient way to display error messages, as well as other types of informa​tion

 that may be useful during the course of the computation.

- This function is written as a single executable statement; i.e.,
.

MsgBox(string)
- String represents the error message, in the form of a string (either a string constant or a string variable) that is

 provided by programmer. When the error message is encountered, it will generate a error message

- The MsgBox function allows other display options, including multiple command buttons and a provi​sion for

 subsequent action that is dependent on the selection of a command button .

CREATING TIMED EVENTS (THE TIMER CONTROL)

- Applications involving timed events, such as a digital clock or a stopwatch, make use of the timer .

 - Like other controls, the timer is placed in the Form Design Window at design time.

 - Its location a appearance are unimportant, because the timer itself does not appear when the program is

 executed.

 - The value assigned to certain timer properties are critical, however, since they govern the functioning of the

 timed event Of primary importance is the Interval property.

 - This property can be assigned an integer value ranging from 0 to 65,535.

 - A zero value disables the timer.

 - Positive values represent the number of milliseconds D between timed events.

 - Thus, a value of 1 represents an interval of one millisecond (one thousandth of a second 1000 represents a

 one-second interval; and 60,000 represents one-minute interval. The actual interval may longer, however,

 because the frequency of timed events cannot exceed 18.2 per second (which corresponds to, minimum

 Interval value of 54.9). Furthermore, the interval may be longer if the system is relatively busy (i.e.,1

 Substantial computation is taking place within the interval).

- The Enabled property must be assigned a value of True in order to activate the timer. Timer1.Enabled to

 False disables the timer. This property may be assigned at design time and/or during program execution.

 EXAMPLE.

 Private Sub Timer1_Timer() 'Beep

If (Shape1 .FillStyle = 0) Then

Shape1 .FillStyle = 1 Shape2.FillStyle = 0

Else

Shape1.FillStyle = 0 Shape2.FillStyle = 1

End If

SCROLL BARS

 - Scroll bars used to view a large document by moving the visible window (scrolling) vertically or

 horizontally.

 - Its used to select a particular value within a specified range, or to select a specific item from a list.

 - Visual Basic supports both horizontal and vertical scroll bars. They both work the same way.

 - A scroll bar consists of a slide area enclosed by an outward-pointing arrow button at each end.

 - The slide area contains a button (called the "thumb") that can be dragged within the slide area.

 - The location of the thumb within the slide area determines the portion of the document being viewed, the

 value being selected, etc.

 - In horizontal scroll bar, dragging the thumb to the leftmost portion of the slide area permits the leftmost

 portion of a document to be viewed, or the lowest value to be selected within a range, and so on.

 - There are two other ways to move the thumb within a scroll bar.

 * Can click on the empty slide area, on either side of the thumb.

 * Can click on an arrow button at the end of the scroll bar.

· Each click will pro​duce an incremental movement in the indicated direction.

· Clicking on the slide area usually results in greater movement than clicking on an arrow button.

· The magnitudes of various movements will be determined by the values assigned to certain scroll bar

 Properties.

 - The most important properties associated with scroll bars are Min, Max, SmallChange and LargeChange.

· Min and Max represent integer values corresponding to the minimum and maximum thumb locations within the slide area.

· The defaults are Min = 0 and Max = 32767, though these values can be altered at design time or while the program is executing.

· The values assigned to Min and Max must always fall within the interval 0 to 32767, and Min must always be assigned a value less than Max.
· SmallChange and LargeChange indicate the size of the incremental movements when you click on the ar​row buttons or the empty slide area, respectively.
· Each has a default value of I, and each can be reassigned a value between 1 and 32767.
· The larger the value, the greater the movement resulting from a single click.
· SmallChange is assigned a smaller value than LargeChange, though this need not always be true

UNIT-III

INTRODUCTION TO MENUS

Menus in applications make it more users friendly. Visual Basic supports upto six Levels of menus. Menus that contain submenus are usually called Hierarchical Menus. Mostly two or three levels of submenus are used . Existence of a Sub Menu for a Menu items is denoted by the symbol.

MENUS - Working with Menus in Visual Basic

 Windows applications provide groups of related commands in Menus. These commands depends on the

 application, but some-such as Open and Save -are frequently found in applications. Visual Basic provides an

 easy way to create menus with the modal Menu Editor dialog. The below dialog is displayed when the Menu

 Editor is selected in the Tool Menu. The Menu Editor command is grayed unless the form is visible. And

 also can display the Menu Editor window by right clicking on the Form and selecting Menu Editor.

BUILDING DROP DOWN MENUS USING MENU EDITOR
 - In the Menu Editor Window you can specify the structure of your menu by adding one command

 at a time.

· Each menu command has two compulsory properties.

 1.Caption : This is the name that user sees on the application's menu bar

 2. Name : This is the name of the menu command. This property doesn't appear on the screen,

 but this name is used program the menu command.

 An expanded Menu Editor window

[image: image8.jpg]Moot [Nesaonte o ore <]

Bl e e e
s
S|) G |

-

An expanded menu
[image: image9.jpg]Toprlevel menus— IR mage Colors el
 Tool Boe——Gus—— Command
Colrbox b

~——Sharteut key
v Status Bar
Disabled command-——_~
Separatorbar——""" g0y, »—ndicates submenu

ViewBimap ik

+

 3. Index TextBox : The programmer can create menu control arrays. The Index TextBox specifies the

 menu's index in the control array.

4. Checked : The Menu Editor dialog also provides several CheckBoxes to control the appearance of the

 Menu.This is unchecked by default and allows the programmer the option of creating a

 checked menu item(a menu item that act as a toggle and displays a check mark when selected

 The following is a Check Menu items.

[image: image10.jpg]v ToolBox Ctrl+T
ColorBox Ctrltl
v Status Bar

2Zoom
View Bitmap Ctr+F

5. Enabled : specifies whether a menu is disabled or not. If you see a disabled command in a menu that

 means that feature is not available. The Visible checkbox specifies whether the menu is visible

 or not.

 To add commands to the Form's menu bar, enter a caption and a name for each command. As soon as you

 start typing the command's caption, it also appears in a new line in the list at the bottom of the Menu Editor

 window. To add more commands click Enter and type the Caption and the Name

Creating Menus
 - Open a new Project and save the form as menu.frm and save the project as menu.vbp.

 - Choose Tools ››› Menu Editor and type the menu items as shown below.

	Caption
	Name

	File
	mnuFile

	Open
	mnuOpen

	Save
	mnuSave

	Exit
	mnuExit

	Edit
	mnuEdit

	Copy
	mnuCopy

	Cut
	mnuCut

	Paste
	mnuPaste

[image: image11.jpg]o [BE
O ——
e [soats oo o]

HepcontoD: G Mogsataboston: [o-ns <
" Cheded bl [vae T wdowit

 Run the application by pressing F5. You can see that you can select a menu.

ACCESSING MENU FROM KEYBOARD

1. A keyboard access character

 - Can be defined for each menu item.

 - Allows the user to view a drop-down menu by pressing Alt and the access key for the menu

 heading, rather than clicking on the menu heading.

 - Once the drop-down menu is shown, the user may select a menu item by pressing its access key

 (with​out Alt) rather than clicking on the menu item.

2. To define an access character
 - Use the Menu Editor to place an ampersand (&) in front of the desired char​acter within each

 menu I tem caption (i.e., within each screen name).

 - The access character will then be under​lined when the associated menu item is shown. Note

 that a drop-down menu must actually be visible on the screen for its access characters to be

 active.

 - Each of the menu headings must have a unique access character. Similarly, each menu item

 within a menu must have a unique access character, though the same access character may be

 used (once) in each of two or more menus.

3. Keyboard shortcuts

 - For some or all of the menu items within a drop-down menu. A keyboard shortcut is typically a

 Function key, or a Ctrl-key combination or a Shift​ key combination.

 - Keyboard shortcut can access a menu item directly without first activating the drop-down

 menu.

 Thus, a keyboard shortcut can be used to select a menu item directly from a window, saving

 several keystrokes or mouse clicks.

4. Setting Keyboard shortcuts
 - Selected directly from the Shortcut field within the Menu Editor.

 - Clicking on the down arrow within this field displays the available choices.

 - The keyboard shortcuts must be unique. If a menu item (including menu headings) has an

 Associated keyboard shortcut, it must be different from all other keyboard shortcuts.

 MENU ENHANCEMENTS
 The menu editor includes other features that permit various menu item enhancements.

· Checked - Check mark can be assigned to a menu item, indicating the on-off status of the menu

 item.

 - Selecting the box labeled Checked will cause the menu item to be checked initially.

 - Its status can then be changed under program control when the program is executing.

· Enabled - Another useful feature is the ability to deactivate a menu item by deselecting the Enabled

 box

 - The menu item will then appear "grayed out" within the menu, and it will not respond to

 mouse clicks, keyboard access characters or keyboard shortcuts.

· Visible - A menu item may be made invisible by deselecting the Visible box .

 - It can later be changed under program control.

 The items within a menu can be grouped together by introducing separators at various locations

 within a menu. Each separator in a menu item consisting only of a single dash (minus sign). Note that each separator must follow the same rules of indentation as its surrounding menu items.

 SUBMENUS
 - A menu item may have a submenu associated with it.

 - Placing the mouse over the menu item (or pressing the access character, keyboard shortcut, etc.) will

 cause the corresponding submenu to be displayed adjacent to the parent menu item.

 - The submenu items may be assigned the same properties (access characters, Keyboard shortcuts,

 check marks, deactivation, etc.) as any other menu item.

· The use of submenus allows menu selections to be arranged in a logical, hierarchical manner.

 POP-UP MENUS
 The Pop-Up menu is a regular menu, but it is not anchored on the Form. It can be displayed

 anywhere on the Form. It can be invoked by right clicking the Form or a control.

 Creating Pop-Up Menus:
 Pop-Up menus are invoked with the PopupMenu method. First, you create a menu as usual. Suppose you have designed the basic File and Edit menus for an application, and they are displayed on the Form as usual. To make the application a bit easier to use, you can also display the Edit menu as Pop-Up menu. If the Edit menu's name is mnuEdit, you can insert the following line in a control's MouseUp event:

 Private Sub Form_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
If Button = vbRightButton Then
PopupMenu mnuEdit
End If
End Sub

· The MouseUp event is used to illustrate which button was pressed.

· If the right mouse button is pressed, the code calls the Form's PopupMenu method to display the Edit menu. The PopupMenu method is usually called from within TextBox and PictureBox controls, because these controls can carry out editing operations.

· If you don't want the Edit menu to be displayed in the menu bar, still you must have the Edit menu there and what you have to do is making the Edit menu invisible.

 DIALOG BOXES

 Most Windows applications request for user input. Dialog boxes are one means of requesting users for specific kinds of inputs. Therefore, VB 6.0 supports a number of different types of dialog boxes. Standard Dialog boxes are included in classes that fall within the purview of the CommonDialog like FileDialog , ColorDialog , FontDialog etc

 In VB can generate two types of windows. Modal and modal less Dialog boxes.The first type retains the input focus while open. The user cannot switch windows until the window is closed. This behavior is typical to dialog boxes which you need to close before continuing to other tasks. This kind of dialog box is referred to as a modal dialog box.
 INPUTBOX

 It Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a String containing the contents of the text box.

Following is an expanded InputBox
[image: image12.jpg]e T

Coesl
N e —

Syntax :
Memory_variable = InputBox (prompt[,title][,default])

 Memory Variable – It’s a variant data type but typically it is declared as string, which accept the

 message input by the users. The arguments are explained as follows:

· Prompt - String expression displayed as the message in the dialog box. If prompt consists of more than one line, you can separate the lines using the vbCrLf constant

· Title - String expression displayed in the title bar of the dialog box. If you omit the title, the application name is displayed in the title bar

· default-text - The default text that appears in the input field where users can use it as his intended input or he may change to the message he wish to key in.

· x-position and y-position - the position or the coordinate of the input box.

Following example demonstrates the use of InputBox function

1. Open a new project and save the Form as InputBox.frm and save the Project as InputBox.vbp

2. Design the application as shown below.

	Object
	Property
	Setting

	Form

	Caption

Name
	InputBox test

frmInputBox

	Label

	Caption

Name
	You entered

lbl1

	Label

	Caption

Name

BorderStyle
	(empty)

lbl2

1-Fixed Single

	CommandButton

	Caption

Name
	OK

cmdOK

[image: image13.jpg]YouEntered

3. Following code is entered in cmdOK_Click () event

Private Sub cmdok_Click()
Dim ans As String
ans = InputBox("Enter something to be displayed in the label", "Testing", 0)
If ans = "" Then
lbl2.Caption = "No message"
Else
lbl2.Caption = ans
End If
End Sub

4.Save and run the application.

5.Click the OK button .The following InputBox will appear.

[image: image14.jpg]Entes samething o be dsplayed i the label

Feoward

6. Enter "Hello World" in text field. Then click OK the output shown below will appear.

[image: image15.jpg]YouEnteed ’—H*Wuﬂd

THE MsgBox FUNCTION

 Displays a message in a dialog box and wait for the user to click a button, and returns an integer indicating which button the user clicked.

Following is an expanded MessageBox
[image: image16.jpg]|
LE) e | o

Syntax :
MsgBox (Prompt [,icons+buttons] [,title])

Memory_variable = MsgBox (prompt [, icons+ buttons] [,title])

Prompt : String expressions displayed as the message in the dialog box. If prompt consist of more than

 one line, you can separate the lines using the vbrCrLf constant.

Icons + Buttons : Numeric expression that is the sum of values specifying the number and type of buttons and

 icon to display.

Title : String expression displayed in the title bar of the dialog box. If you omit title, the application name is placed in the title bar.

Icons

	Constant
	Value
	Description

	vbCritical
	16
	Display Critical message icon

	vbQuestion
	32
	Display Warning Query icon

	vbExclamation
	48
	Display Warning message icon

	vbInformation
	64
	Display information icon

Buttons
	Constant
	Value
	Description

	vbOkOnly
	0
	Display OK button only

	vbOkCancel
	1
	Display OK and Cancel buttons

	vbAbortRetryIgnore
	2
	Display Abort, Retry and Ignore buttons

	vbYesNoCancel
	3
	Display Yes, No and Cancel buttons

	vbYesNo
	4
	Display Yes and No buttons

	vbRetryCancel
	5
	Display Retry and Cancel buttons

Return Values

	Constant
	Value
	Description

	vbOk
	1
	Ok Button

	vbCancel
	2
	Cancel Button

	vbAbort
	3
	Abort Button

	vbRetry
	4
	Retry Button

	vbIgnore
	5
	Ignore Button

	vbYes
	6
	Yes Button

	vbNo
	7
	No Button

Following is an example illustrates the use of message boxes

 - Open a new Project and save the Form as messageboxdemo.frm and save the Project as

 messageboxdemo.vbp

 - Design the application as shown below.

	Object
	Property
	Setting

	Form
	CaptionName
	MessageBoxDemofrmMessageBoxDemo

	Label
	CaptionName
	lblNameName

	TextBox
	NameText
	txtName(empty)

	ListBox
	Name
	lstName

	CommandButton
	CaptionName
	Add cmdAdd

	CommandButton
	CaptionName
	Delete cmdDelete

	CommandButton
	CaptionName
	Exit cmdExit

[image: image17.jpg]

Following code is entered in the txtName_Change () event

Private Sub txtName_Change()
If Len(txtName.Text) > 0 Then
cmdAdd.Enabled = True
End If
End Sub

Following code has to be entered in the cmdAdd_Click () event

Private Sub cmdAdd_Click()
answer = MsgBox("Do you want to add this name to the list box?", vbExclamation + vbYesNo,
"Add Confirm")
If answer = vbYes Then
lstName.AddItem txtName.Text
txtName.Text = ""
txtName.SetFocus
cmdAdd.Enabled = False
End If
End Sub

Following code is entered in the cmdDelete_Click () event

Private Sub cmdDelete_Click()
Dim remove As Integer
remove = lstName.ListIndex
If remove < 0 Then
MsgBox "No names is selected", vbInformation, "Error"
Else
answer = MsgBox("Are you sure you want to delete " & vbCrLf & "the selected name?",_
vbCritical + vbYesNo, "Warning")
If answer = vbYes Then
If remove >= 0 Then
lstName.RemoveItem remove
txtName.SetFocus
MsgBox "Selected name was deleted", vbInformation, "Delete Confirm"
End If
End If
End If
End Sub

Following code is entered in the cmdExit_Click () event

Private Sub cmdExit_Click()
answer = MsgBox("Do you want to quit?", vbExclamation + vbYesNo, "Confirm")
If answer = vbYes Then
End
Else
MsgBox "Action canceled", vbInformation, "Confirm"
End If
End Sub

· Save and run the application. You can notice the different type of message box types are used to perform an action
UNIT-IV

INRODUCTION TO MODULES AND PROCEDURES

Large projects are much more manageable if they broken up into modules, each of which contains portions of the code comprising the entire project. Visual Basic supports several types of modules, each of which is stored as a separate file.

Form modules contain declarations, event procedures and various support information their respective forms and controls. Form modules are stored as files identified by the extension .frm. Whenever you add a new form to a project and then save the form, a separate form module (i.e., a new .frm file) is created. A new form can be created by selecting Add Form from Visual Basic's Project menu. This results in a new form design window, within you may add the required code.

A project may also include a standard module. Standard modules contain declarations and procedures that can be accessed by other modules. Standard modules are stored as files with the extension .bas. A standard module can be created by selecting Add Module from Visual Basic's Project menu. This results in a new code editor window, within which you may add the necessary declarations and procedures.

Visual Basic also supports other types of modules, including class modules (extension .cls), whose characteristics are beyond the scope of our present discussion. A procedure (including an event procedure) is a self-contained group of Visual Basic commands that can be accessed from a remote location within a Visual Basic program. The procedure then carries out specific action. Information can be freely transferred between the "calling" location (i.e., the command which accesses the procedure) and the procedure itself. Thus, it is possible to transfer information to a procedure, process that information within the procedure, nd then transfer a result back to the calling location. Note, however, that not all procedures require an information transfer - some merely carry out an action without any information interchange.

Large modules are customarily decomposed into multiple procedures, for several reasons. First, the use of procedures eliminates redundancy (that is, the repeated programming of the same group of instructions at different places within a program). Secondly, it enhances the clarity of a program by allowing the program to be broken down into relatively small, logically concise components. And finally, the use of independent procedures allows programmers to develop their own libraries of frequently used routines.

Visual Basic supports three types of procedures - Sub procedures (sometimes referred to simply as subroutines), Function procedures (also called functions), and Property procedures. Sub and function procedures are commonly used in beginning and intermediate level programs. Hence, our focus in this chapter will be on sub and function procedures. The shell (beginning and ending statements) for a new sub or function procedure can be added to a project by selecting Add Procedure... from the Tools menu.

SUB PROCEDURES (SUBROUTINES)

In its simplest form, a sub procedure is written as

Sub procedure name (arguments)

…………..

Statements

…………..

End Sub

The procedure name must follow the same naming convention used with variables. In addition, a procedure name cannot be identical to a constant or variable name within the same module. The list of arguments is optional. Arguments represent information that is transferred into the procedure from the calling statement. Each argument is written as a variable declaration; i.e.,

argument name As data type

The data type can be omitted if the argument is a variant. Multiple arguments must be separated by commas. If arguments are not present, an empty pair of parentheses must appear in the Sub statement.

EXAMPLE
DEFINING A SUB PROCEDURE

Here is a sub procedure that determines the smallest of two numbers.

Sub Smallest(a, b)

Dim Min

If (a < b) Then

Min = a

MsgBox “a is smaller (a = “ & Str(Min) & “)”

ElseIf (a > b) Then

Min = b

MsgBox “b is smaller (b = “ & Str(Min) & “)”

Else

Min = a

MsgBox "Both values are equal (a, b = “ & Str(Min) & “)”

End If

End Sub

This procedure has two arguments, a and b. Both are variants. The procedure compares the values of the arguments, determines which is smaller, and then displays the value of the smaller argument in a message box. Note that the variable Min is a variant that is defined locally within the procedure. It represents the smallest value among the arguments. This variable is not required in this example (we could simply use a or b instead). However, it is a good idea to include this variable, in case the procedure should be expanded to process the minimum value in some manner without altering the given values of the arguments. Also, note that we could also have included explicit data typing in the first two lines; i.e.,

Sub Smallest(a As Variant, b As Variant)

Dim Min As Variant

or, if we choose a different data type,

Sub Smallest(a As Single, b As Single)

Dim Min As Single

etc., if we wished.

A sub procedure can be accessed from elsewhere within the module via the Call statement. The Call statement is written

Call procedure name (arguments)

The list of arguments in the Call statement must agree with the argument list in the procedure definition. The arguments must agree in number, in order, and in data type. However, the respective names may be different. Thus, if the procedure definition includes three arguments whose data types are single, integer, and string, the Call statement must also contain three arguments whose data types are single, integer, and string respectively. The names of the arguments within the procedure definition need not, however, be the same as the names of the arguments in the Call statement.

For example, the arguments within the procedure definition might be named a, b and c, whereas the corresponding arguments within the Call statement might be called x, y and z. Here is another way to access a sub procedure.

procedure name arguments

Note the absence of the keyword Call, and the absence of parentheses. When the procedure is accessed, the values of the arguments within the calling portion of the program become available to the arguments within the procedure itself. Thus, the values of the arguments are transferred from the calling portion of the program to the procedure. Moreover, if the value of an argument is altered within the procedure, the change will be recognized within the calling portion of the program. (Actually, it is the addresses of the arguments that are shared; hence, the contents of those addresses can be accessed from either the calling portion of the program or from within the procedure itself.) This type of transfer is called passing by reference.

EVENT PROCEDURES

Event procedures should be quite familiar by now, as we have been using them throughout this book. An event procedure is a special type of sub procedure. It is accessed by some specific action, such as clicking on an object, rather than by the Call statement or by referring to the procedure name. The particular action associated with each event procedure is selected from the upper-right drop-down menu within the Code Editor Window. The object name and the activating event collectively make up the event procedure name. Thus, Command1_Click(). is the name of an event procedure that is activated by clicking on command button Command 1. Like any other sub procedure, arguments may be used to transfer information into an event procedure. An empty pair of parentheses must follow the procedure name if arguments are not present.

EXAMPLE
DEFINING AN EVENT PROCEDURE

Returning to the project presented in Example 1.3, suppose we double click on command button Command1 within the Form Design Window. The Code Editor Window will then be displayed. Once the object and the action have been selected, the first and last lines of the event procedure are generated automatically within the Code Editor Window. The user must then provide the remaining Visual Basic statements, thus completing the event procedure. The term Private appearing in the first line determines the scope of the event procedure. The portion of the program in which the event procedure is recognized. The reader is again reminded that the indented statements are provided by the programmer.

FUNCTION PROCEDURES

A function procedure is similar to a sub procedure, with one important difference: a function is intended to return a single data item, just as a library function returns a single data item. Each function name therefore represents a data item, and has a data type associated with it. Within a function definition, the function name must be assigned the value to be returned, as though the function name were an ordinary variable. In its simplest form, a function procedure is written as

Function procedure name (arguments) As data type

.

Statements

.

procedure name =

..……

End Function

As with a sub procedure, the list of arguments is optional. Arguments represent information that is transferred into the procedure from the calling statement. Each argument is written as a variable declaration; argument name As data type. Remember that the data type can be omitted if the argument is a variant. Multiple arguments must be separated by commas. If arguments are not present, an empty pair of parentheses must appear in the Function statement. The data type designation in the Function statement refers to the data item being returned. This designation is not essential - the returned data item will be considered to be a variant if the designation is not included. Notice that the procedure name is assigned a value at some point within the procedure (multiple assignments are permitted, in accordance with the required program logic). This is the value being returned by the function. Thus, within a function, the procedure name is used as though it were an ordinary variable. (Contrast this with a sub procedure, where the procedure name does not represent a data item.)

EXAMPLE
DEFINING A FUNCTION PROCEDURE

Here is a function procedure that determines the factorial of a positive integer quantity.

Function Factorial(n As Integer) As Long

Dim i As Integer

If n < 1 Then

Beep

MsgBox ("ERROR- PLEASE TRY AGAIN”)

Else

Factorial = 1

For i = 1 To n

Factorial = Factorial* i

Next i

End If

End Function

This procedure has one integer argument, n, which represents the value whose factorial will be determined. Thus, the value of n is transferred into the procedure, and its factorial is returned as a long integer. A function procedure is accessed in the same manner as a library function, by writing the function name and its required arguments as an expression. Thus, the function name (and its arguments) can be assigned to another variable, etc. The list of arguments in the function access must agree with the argument list in the function definition in number, in order and in data type. As with sub procedures, however, the names of the arguments in the function access may be different than the argument names used in the function definition.

SCOPE
Scope refers to the portion of a program within which a procedure definition (or a variable or named constant definition) is recognized. The scope of a sub procedure is determined by the identifier Public or Private, which precedes the procedure name; e.g.,

Public Sub procedure name (arguments)
 (or)
Private Sub procedure name (arguments)

Similarly, the scope of a function procedure is determined as

Public Function procedure name (arguments) As data type
 (or)
Private Function procedure name (arguments) As data type

A- Public procedure can be accessed from any module or form within a program, whereas a Private procedure will be recognized only within the module or form within which it is defined. The default is Public. Hence, if a programmer-defined procedure does not include a Public/Private specification, it is assumed to be Public. Note, however, that event procedures automatically include the designation Private when they are created. ​When a Public procedure is accessed from a module or form other than the module or form containing the module definition, the procedure name must be preceded by the form name containing the definition; e.g.,

Call form name.procedure name (arguments)

for a sub procedure access. Function procedures are accessed similarly, with the form name containing the function definition preceding the function name; e.g., variable = form name. function name (arguments)
Variables and named constants that are defined within a procedure are local to that procedure. However, variables and named constants can also be declared within a module, external to any procedures defined within the module. Such variables (or named constants) can be declared Public or Private; e.g., Private variable name As data type (or)
Public variable name As data type

In the first example (Private), the variable will be recognized within the module in which it is declared, but not in other modules. If a different (local) variable with the same name is declared within a procedure, then the local variable can be referenced within the procedure simply by its name. The (global) variable declared outside of the procedure can also be referenced within the procedure, by prefixing its name with the form name; e.g.,

form name. variable name

EXAMPLE

Here is a skeletal outline of a module containing both a global and a local variable having the same name.

Private Factor As Integer

Private Sub Sample()

Dim Factor As Integer

. ……

Form1.Factor = 3; Form2 = 6

. . .

End Sub

If a variable is declared to be Public within a module, then the variable will be recognized anywhere within the entire project. The variable can be referenced within the module in which it is declared simply by its name (unless it is referenced within a procedure containing a local variable with the same name, as described previously). To reference the variable within other modules, it must be preceded by its form name.

.

OPTIONAL ARGUMENTS

When accessing a procedure, the passing of one or more arguments can be made optional. To do so, each optional argument declaration within the first line of the procedure definition must be preceded by the keyword Optional. For example, if a sub procedure is defined with one mandatory argument and one optional argument, the first line of the procedure declaration will be

Sub procedure name (argument1 As data type1, Optional argument2 As data type2)
Function procedures are defined in the same manner. Optional arguments must always follow mandatory arguments in the argument list. A default value may be specified for each optional argument, by writing Optional argument As data type = value

The default value will be assigned to the argument if an actual argument value is not provided in the procedure reference.

EXAMPLE

Here is a skeletal outline showing a function procedure that utilizes an optional argument.

Private Function Sample(x As Integer, Optional y As Integer = 999) As Integer

Sample = x ^ 2

If (y = 999) Then

'bypass remaining calculations

Exit Function

Else

'modify result using optional argument

Sample = x ^ 2 + y ^ 2

EndIf

End Function

Note that the second argument, y, is optional and is assigned a default value of 999. If this function is accessed with only one argument, e.g., n = Sample(3) it will return a value of 9. However, if the function is accessed with two arguments, e.g.,

n = Sample(3, 4) it will return a value of 25. Here is a sub version of the same procedure.

Private Sub Sample(x As Integer, z As Integer, Optional y As Integer = 999)

z = x ^ 2

If (y = 999) Then

'bypass remaining calculations

Exit Function

Else

'modify result using optional argument

z = x ^ 2 + y ^ 2

End If

End Function

Note that the optional argument (y) appears at the end of the list of arguments, as required. If this procedure is accessed as

Sample(3, 0), it will assign a value of 9 to the second argument (z). But if the procedure access is written as Sample(3, 0, 4), then the second argument will be assigned a value of 25.

INTRODUCTION TO ARRAY CHARACTERISTICS

Many applications require the processing of multiple data items that have common characteristics, such as a set of numerical data items represented by xl, x2, . . ., xn. In such situations, it is often convenient to place the data items into an array, where they will all share the same name (e.g., x). The data items that make up an array can be any data type, though they must all be the same data type. (An exception is the variant-type array, where each data item may be of a different data type. However, the use of variant-type arrays is generally considered a poor programming practice.) Each individual array element is referred to by specifying the array name followed by one or more subscripts, enclosed in parentheses. Each subscript is expressed as an integer quantity, beginning with 0. Thus, in the n-element array x, the array elements are x (0), x (1), . . . , x (n - 1). The number of subscripts determines the dimensionality of the array. For example, x (i) refers to the ith element in a one-dimensional array x. It is helpful to think of a one-dimensional array as a list (Note that Element I corresponds to subscript value 0, Element 2 corresponds to subscript 1, etc.)

	
	
	
	
	
	

Element 1
Element 2

Element 3

Element n

Fig. 2.1 A one-dimensional array

Similarly, y (i, j) refers to an element in the two-dimensional array y. Think of a two-dimensional array as a table, where i refers to the row number and j refers to the column number, as illustrated in Fig. 2.2

	
	
	
	
	
	

Row 1

	
	
	
	
	
	

Row2

	
	
	
	
	
	

Row 3

.

	
	
	
	
	
	

Row m

Column 1
Column 2

Column 3

 Column n

Fig. 2.2 A two-dimensional array

Higher-dimensional arrays, such as the three-dimensional array z (i, j, k), are formed by specifying additional subscripts in the same manner. Note, however, that multidimensional arrays can quickly become very large, and hence require vast amounts of storage. You should therefore avoid the temptation to define multidimensional arrays that are unnecessarily large.

ARRAY DECLARATIONS

An array must be declared before it can appear within an executable statement. The Dim statement is used for this purpose. This statement defines the dimensionality (i.e., the number of subscripts), the size (range of each subscript), the data type and the scope of an array. Within the Dim statement, each array name must be followed by one or more integer constants, enclosed in parentheses. If several integer constants are present (indicating a multidimensional array), they must be separated by commas. To declare an array within a procedure, the Dim statement is generally written as

Dim array name (subscript 1 upper limit. subscript 2 upper limit, etc.) As data type

Within a module (but outside of a procedure), array declarations are written as

Private array name (subscript 1 upper limit, subscript 2 upper limit. etc.) As data type

or

Public array name (subscripi 1 upper limit. subscript 2 upper limit, etc.) As data type

Each subscript normally ranges from 0 to the specified upper limit. Thus, the Dim statement, Dim c(10) As Integer defines an eleven-element integer array consisting of the data items c (0), c (1), c (2), . . ., c (1 0). However, the specification of a different lower limit can also be included within a Dim statement (or a Public or Private statement). In this case, the general form of the Dim statement is

Dim array name (subscript 1 lower limit To subscript 1 upper limit,

subscript 2 lower limit To subscript 2 upper limit, etc.) As data type

Public and Private statements are written in the same manner.

EXAMPLE

A Visual Basic module includes the following array declarations.

DIM Customers(200) As String, Net(100) As Single, Sales(1 To 50, 1 To 100) As Single

This statement defines Customers to be a one-dimensional string array containing 201 elements, ranging from Customers (0) to Customers (200). Similarly, Net is a one-dimensional, single-precision array containing 101 elements, and Sales is a two-dimensional, single-precision array containing 5,000 elements (i.e., 50 rows and 100 columns; 50 x 100 = 5,000). In some applications, it is more natural to use arrays whose subscripts begin at 1 rather than O. Thus, a one-dimensional, n-element array will range from 1 to n rather than 0 to n - a more natural selection for many programmers. The Option Base statement allows the lower limit for all arrays within a module to be changed to 1. This statement is written simply as Option Base 1. Option Base must appear at the module level (not within a procedure), and it must precede any array declarations within the module.

PROCESSING ARRAY ELEMENTS (SUBSCRIPTED VARIABLES)
The individual elements within an array are called subscripted variables. Subscripted variables can be utilized within a program in the same manner as ordinary variables. A subscripted variable can be accessed by writing the array name, followed by the value of the subscript enclosed in parentheses. Multidimensional array elements require the specification of multiple subscripts, separated by commas. The subscripts must be integer valued and they must fall within the range specified by the corresponding array declaration.

A subscript can be written as a constant, a variable or a numeric expression. Non-integer values will automatically be rounded, as required. If the value of a subscript is out of range (i.e., too large or too small), execution of the program will be suspended and an error message will appear.

EXAMPLE
All of the subscripted variable assignments shown below are written correctly.

Dim Names(10) As String, Values(10, 20) As Single, k(10) As Integer

Dim a As Single, b As Single, m As Integer, n As Integer

.

Names(3) = "Aaron"

values(8, 5) = 5.5

Names(i) = "Susan"

values(m, n) = -3.2

Names(k(i)) = "Martin"

values(m - 1, n + 3) = m + n

Names(2 * a - b) = "Gail"

values(a + b, a - b) = 3 * a

Names(sqr(a A 2 + b A 2)) = "Sharon"

values(abs(a + b), abs(a - b)) = a + b

Some of the subscripts may not be integer valued as written. In such cases, the noninteger values will automatically be rounded. Suppose, for example, the numeric expression (2 * a - b) has a value of 4.2. Then the subscripted variable Names(2 * a - b) will be interpreted as Names(4). Similarly, if (2 * a - b) has a value of4.7, then the subscripted variableNameS(2 * a - b) will be interpreted as Names(5). Within a user-defined array, the individual components (members) of a subscripted variable can be accessed as

array name (subscript) . member name

These components can be used in the same manner as ordinary variables. Thus, they can appear within expressions, and they can be assigned values.

PASSING ARRAYS TO PROCEDURES

Arrays can be passed to procedures as arguments, in much the same manner as ordinary variables are passed as arguments. If an argument is an array, however, an empty pair of parentheses must follow the array name. This requirement must be satisfied in both the procedure access and the first line of the procedure definition, as illustrated in the following example.

EXAMPLE
PASSING AN ENTIRE ARRAY TO A PROCEDURE

Here is a skeletal structure of a Visual Basic program that passes an entire array to a sub procedure. The first n elements are then assigned numerical values within the procedure. This is permissible, as long as the array arguments are of the same size and the same data type, and they appear in the same relative location within each argument list.

Dim x(10) As Integer, n As Integer

.

n =

Call Setup(x(), n)

'procedure reference

'or Setup x(), n

Private Sub Setup(v() As Integer, n As Integer)

'procedure definition

Dim i as integer

For i = 0 to n

v(i) = i ^2

Next i

End Sub

Since the array elements are passed by reference, the values assigned to the array elements within the procedure will be recognized elsewhere within the program. Individual array elements may also be passed to procedures as arguments. Subscripted variables are written in the normal manner when they appear as arguments within a procedure reference. The corresponding arguments in the first line of the procedure definition may be either subscripted variables or ordinary variables, depending on the program logic.

DYNAMIC ARRAYS

A dynamic array is an array whose size can be changed at various places within a program. To declare a dynamic array, we use the Dim statement, followed by the array name and an empty pair of parentheses; i.e.,

Dim array name () As data type

Within a module but outside of a procedure, we can also use either the Private or the Public statement; i.e.,

Private array name () As data type

 (or)

Public array name () As data type

To specify the actual array size, use ReDim statement; i.e., ReDim array name (subscript 1 upper limit, subscript 2 upper limit, etc.)

Lower limits may also appear within the ReDim statement; i.e., ReDim array name (subscript 1 tower limit To subscript 1 upper limit,

subscript 2 lower limit To subscript 2 upper limit, etc.) As data type

Unlike the Dim statement, integer variables or expressions may be used to represent the subscript limits. The ReDim statement need not immediately follow the Dim statement; it can (and usually does) appear at some later point within the program. Moreover, it may appear more than once, allowing the array to be resized each time it appears.

EXAMPLE

Here is a skeletal outline of a procedure that utilizes a dynamic array.

Sub Sample()

Dim x()As Integer, n As Integer

.

ReDim x (10)

.

ReDim x(30)

.

n =

ReDim x(n)

End Sub

Within the Dim statement, we see that x is declared as a dynamic array, because of the empty parentheses. We then dimension x to be a 20-element array. Subsequently, the size of x is again altered, first as a 30-element array, and then as an n-element array. In the last case, the value assigned to the integer variable n will determine the array size. When a numerical array is redimensioned, the values previously assigned to the array elements will be reset to zero. Similarly, when a string array is redimensioned, the strings previously assigned to the array elements will replaced by empty strings. However, the previously assigned values will be retained if the ReDim statement includes the keyword Preserve; i.e., ReDim Preserve array name (subscript 1 upper limit, subscript 2 upper limit, etc.)

When the Preserve feature is utilized, only the upper limit of the last subscript can be altered; i.e., you cannot alter the lower limit of the last subscript, nor can you alter any of the other subscripts.

ARRAY-RELATED FUNCTIONS

Visual Basic includes several array-related library functions. These functions are rarely needed in simple programs, but they can be very useful in more complex programs, where it may be necessary to create arrays or to determine array properties during program execution.

Array-Related Library Functions

Function

Application

Description

Array

Dim x As Variant

Creates a variant-type array. The arguments

x = Array(3, 0.2, "OK")
represent array elements

IsArray

If IsArray (x) Then

Returns a True/False value that is True if the

MsgBox "Array Defined"
argument is an array, and False otherwise.

Else

MsgBox "Array Undefined"

LBound

Dim x(3 To 10)

Returns the subscript lower limit of the array

Y = LBound(x)

argument.

Dim c(3 To 10, 5 To 20)
If the array is multidimensional, LBound

y= LBound(c, 2)
returns the Lower limit of the subscript indicated by its second argument.

UBound

Dim x(3 To 10)

Returns the subscript upper limit of the array

Y = UBound(x)

argument.

Dim c(3 To 10, 5 To 20)
If the array is multidimensional, UBound

y = UBound(c, 2)
returns the upper limit of the subscript indicated by its second argument.

CONTROL ARRAYS

Multiple controls of the same type can be grouped into an array, in the same manner as a collection of data items. Such a grouping is known as a control array. Under certain conditions, the control array elements may share a common event procedure, using an index to distinguish one control from another. Control arrays are created at design time. Additional control array elements can also be added and later deleted at run time. A control array can be created by placing a control within the Form Design Window and assigning a value of 0 to its Index property. Then copy and paste the control, resulting in a new control with the same in the upper left comer of the Form Design Window. You may then drag the new control to its desired location within the Form Design Window. This process may be repeated as many times as you wish. Each repetition will result in a new control within the control array. Remember that all of the control array elements will share the same name, but are distinguishable by the value of their index. The captions will also be the same, when the control array is created in this manner.

EXAMPLE
SELECTING MULTIPLE FEATURES USING CONTROL ARRAYS

The project contains multiple check boxes and multiple labels. The individual controls within each control type share common properties (namely, font size and visibility status). Therefore, this project is a good candidate for the use of control arrays. In this example we will re-create the project originally using two different control arrays one consisting of seven check boxes (one for each language), the other consisting of seven labels (each containing an appropriate "hello" message). The two control arrays, called Check1 and Labe11, respectively, were created. Initial values will not be assigned to any of the control properties. Instead, these initial property assignments will be made at run time. The initial property values for these controls will be assigned at run time, along with the required control array property values. Now consider the event procedure Form_Load. This procedure begins with a declaration (Count), followed by caption assignments for the individual elements in each of the two control arrays. These assignments are followed by a simple loop that assigns font sizes and visibility status to the control array elements, as required. Following the control array property assignments, we see a caption assignment for the form, and caption/font size assignments for the remaining controls. In addition, the Alignment property associated with Label2 is assigned a value that will cause the caption to be centered within the label.

Private Sub Form_Load()

Dim Count As Integer

chkLanguage(0).Caption = "French" ; chkLanguage(1).Caption = "German"; chkLanguage(2).Caption ="Hawaiian" chkLanguage(3).Caption = "Hebrew"; chkLanguage(4).Caption = "Italian"; chkLanguage(5).Caption = "Japanese" chkLanguage(6).Caption = "Spanish"; IblHello(0).Caption = "Bonjour"; IblHello(1).Caption = "Guten Tag"; IblHello(2).Caption = "Aloha"; IblHello(3).Caption = "Shalom" ; IblHello(4).Caption = "Buon Giorno" ; IblHello(5).Caption = "Konichihua";

IblHello(6).Caption = "Buenos Dias"

For Count = 0 To 6

chkLanguage(Count).FontSize = 10; IblHello(Count).Visible = False; IblHello(Count).FontSize = 14

Next Count

Form1.Caption = "Multilingual Hello"

Label2.Caption = “Say Hello, in.. . .”; Label2.FontSize = 14; Label2.Alignment = 2
'Center

Command1.Caption = "Go"; Command1.FontSize = 10; Command2.Caption = "Quit"; Command2.FontSize = 10

End Sub

Private Sub Command1_Click()

Dim Count As Integer

For Count = 0 To 6

IblHello(Count).Visible = False

If chkLanguage(Count).Value = 1 Then

IblHello(Count).Visible = True

End If

Next Count

End Sub

Private Sub Command2_Click()

End

End Sub

Now consider event procedure Command1_Click, which corresponds to the Go button. Other than the initial declaration, this event procedure consists of a single loop that examines all of the check boxes and displays the labels whose corresponding boxes have been checked. This is accomplished by resetting the Visible property to True. This logic is much simpler than the series of If-Then-Else statements.Once a control array has been created, an additional element can be added during run time, using the Load statement; i.e.,

Load control array name (subscript)

Once a new element has been created, it generally must be moved to the desired location within the frame. Moreover, certain of its properties must generally be assigned appropriate values. An element added at run time can later be deleted, using the Unload statement; i.e.,

Unload control array name (subscript)

LOOPING WITH For Each-Next

The For Each - Next structure is a convenient looping mechanism when working with arrays, particularly when it is unclear how many elements are in an array (because the program logic may have resulted in the addition or deletion of array elements). In general terms, the For Each - Next structure is written as

For Each index In array name

.
executable statements

.
Next index

This structure may be used with either static or dynamic arrays. In either case, the index must be a variant. The For Each - Next structure is equivalent to the simplest form of the more commonly used For To​- Next loop.

For index=value1 to value2

.
executable statements

.
Next index

However, the For To - Next structure requires that value1 and value2 be known explicitly, whereas For Each-​Next does not. The For Each - Next structure is not restricted to arrays. It can also be used with other more advanced Visual Basic objects, though this topic is beyond the scope of our present discussion.

EXAMPLE

Here is a Visual Basic code segment that sums the elements in an array, using a ForEach - Next loop.

Option Base 1

Dim x() As Integer, Sum As Integer, i As Variant

.
ReDim x(10)

For i = 1 To 10

X(i) = i

Next i

Sum = 0

For Each i In x

Sum = Sum + x(i)

Print x(i), Sum

Next I

Print

Print "Final Sum = "; Sum

Note that x is a dynamic array in this example, to illustrate the technique. An ordinary (static) array could have been used instead.

The elements of x must be assigned values within a conventional For To- Next loop (or some other means) prior to entering the For Each - Next loop. Thus, we cannot use the simpler code segment

Option Base 1

Dim (x) As Integer, Sum As Integer, i As Variant

.
ReDim x(10)

Sum = 0

For Each i In x

x(i) = i

Sum = Sum + x(i); Print x(i), Sum

Next I

Print

Print “Final Sum = “; Sum

The advantage to the For Each - Next structure is that the value of n is not required within the loop structure and hence need not be known explicitly. This feature can be very useful if the number of array elements changes during the program execution, as a result of elements being added or deleted.

UNIT-V

DATA FILES

Afile is an orderly, self-contained collection of information. Any type of information can be stored within a file. Thus, a file may contain the instructions that comprise a Visual Basic program, it may be a graphical bitmap, it may contain information used to create music, 'or it may consist of data values (typically, numerical values and strings). This last type of file is commonly known as a data file.

Data files offer a convenient means of storing large quantities of information, since the files can be stored on auxiliary storage devices (e.g., a hard drive) and read into the computer as needed. Moreover, individual data items within a data file can easily be read into the computer, updated and written back out to the data file, all under the control of a single program. This chapter is concerned with Visual Basic programs that create and

process data files.
.DATA FILE CHARACTERISTICS

Visual Basic recognizes three different types of data files: sequential files (also called text files), random access files, and binary files (also called unformatted files). Sequential files are the easiest to work with, since

they can be created by a text editor or word processor, or by a Visual Basic program. Such files consist of variable-length strings, organized into individual lines of text. Sequential files can be displayed or printed at the operating system level (outside of Visual Basic), and they are easily imported into an application program, such as a word processor or spreadsheet program. In order to access a particular line of text, however, you must start at the beginning of the file and progress through the file sequentially, until the desired line has been located. This process can be very time-consuming when searching through a large file.

Random access files are organized into fixed-length records. (A record is a set of related data items, such as a name, an address and a telephone number. Each data item within a record fills a .field). Any record can be acc~ssed directly by specifYing the corresponding record number ~r record location. Thus, it is not necessary to read through the entire file in order to access a particular record. Applications that require direct access to individual records without regard to their order (as, for example, the daily updating of customer accounts as they are received) will therefore execute much faster with direct rather than sequential data files.

Finally, binary files store information as a continuous sequences of bytes. Such files appear unintelligible when printed or displayed on a computer screen, but their contents can be read into or written out of a computer faster than other file types, particularly sequential files.

ACCESSING AND SAVING A FILE IN VISUAL BASIC: THE COMMON DIALOG CONTROL

Visual Basic includes special tools for opening an existing file, and for saving either a new file or an existing file that has been modified. These tools are included in a group of common dialog objects that must be added to the Toolbox before any of these tools can be accessed. To do so, select Components ITom the Project menu. Then click on the Controls tab and check the box labeled Microsoft Common Dialog Control.

Once the common dialog control has been activated, the common dialog control icon will appear in the lower right portion of the Toolbox.

When developing a Visual Basic project that involves opening a file or saving a file, place the common dialog control within a form, as you would with any other control tool. Unlike most other control tools, however, the common dialog control does not appear within the form when the project is being executed. Therefore, it does not matter where it is placed within the form. Usually, it is located in some out-of-the-way corner where it will not interfere with other controls.

The conunon dialog control allows an application to easily access existing files or save new files through its conunon dialog boxes. For example, to access an existing file (i.e., to "open" the file), simply add a statement similar to that shown below at the appropriate place.

CommonDialog1.ShowOpen

When this statement is encountered during program execution, a dialog box. The user may then use this dialog box to access a file within the currently active folder, or may maneuver to another folder to access a file. The type of files (i.e., the extension) can be specified within the program by assigning an appropriate string to the CommonDialog1 . Fil ter property; e.g.,

CommonDialog1 .Filter = "Text files (*.txt) [*.txt"

(This particular string assignment restricts the display to text files, though this restriction can be overridden by clicking on the down-arrow at the end of the box labeled Files of type.)

11£1

Save As. .. '", mJG;] mJ.aJ 15m

When the ShowSave statement is encountered, a dialog box resembling that shown in Fig. 9.5 will appear. The user may then use this dialog box to save a file within the currently active folder, or some other folder either above or below the currently active folder. The type of files (i.e., the extension) that can be saved is specified by assigning an appropriate string to the CommonDialog1 . Fil ter property, as shown previously. The file type can be changed by clicking on the down-arrow at the end of the box labeled Save as type.

Save in: IS Programs

DAdditional Programs

~ Colonies.t>ct

SaveaS!ype;!Textfiles (".t>ct)

~

File name;

r

Fig. 9.5 The Save As dialog box

The common dialog control also permits the display of dialog boxes that allow the user to specifY printer settings, to select a font, or to select a color.. These dialog boxes are not required for accessing or saving data

files, though the Print dialog box, shown in Fig. 9.6, is used in many file-related applications. The Print dialog. box is generated by including a statement resell)bling the following at the appropriate place within the code.

CommonDialog1.ShowPrint

tlame;

. Status;

Type:

Where: Comment

Co' !II

r ~election

Fig. 9.6 The Print dialog box

PROCESSING A DATA FILE

All applications involving the use of data files are based Specifically, the following three tasks must be carried out.

1. Open the data file.

2. Process the file, as required by the application.

3. Close the file.

Opening the data file associates a channel number (also called afile number) with a named data file. It also specifies certain information about the data file, such as the mode (Input, Output, Append, Random, or Binary), the access type (Read, Write, or ReadWrite) and any restrictions (Shared, Lock Read, Lock Write, or Lock ReadWrite). (Do not confuse opening a data file with the process of retrieving a data file via the Open dialog box, as described in the last section.)

Processing the data file generally involves reading the data items, modifying the data items, displaying the data items, and then writing the modified data items. There are many variations of this theme, depending upon the particular application.

Closing the data file is a formality that simply deactivates the conditions that were specified when the file was opened. Visual Basic automatically closes all data files at the end of program execution if Close statements are not explicitly included within the program. Good programming practice suggests, however, that all open data files be closed explicitly.

A file can no longer be accessed after it is closed, unless it is later reopened. Note, however, that a file can be reopened in another mode, with another access type, etc., after it has been closed. Some applications require that a file be reopened after it has been closed, as, for example, to read a set of data items after the records have been created or modified by the same program.

upon the same overall sequence of .events.

SEQUENTIAL DATA FILES (TEXT FILES)

A sequential data file is characterized by the fact that the data is stored sequentially, as plain text (i.e., as ASCII characters). The text is organized into individual lines, with each line ending with ASCII line feed (LF) and carriage return (CF) characters. Each line of text can contain both numeric constants and strings, in any combination.

r

When opening a sequential file, the Open statement is generally written in one three ways, depending on

whether the file is an input file, an output file, or an append file, as shown in Example 9.1. The three possibilities are

Open filename For Input

As #n

Open filename For Output As #n Open filename For Append As #n

where n refers to the channel number (i.e., the file number).

Data items are usually read from a sequential data file via the Input # statement. This statement is written

in general terms as

Input #n, data items

where n refers to the channel number and data items refers to the list of input data items, separated by commas. The input data items are typically variables, array elements, control properties, etc.

Similarly, data items are usually written to a sequential data file via the Print # statement, which in general terms is written as

Print #n, data items

where the data items can be constants, variables, expressions, array elements, control properties, etc.

Now consider the arrangement of the data items within the input data file. Within any line, consecutive numeric constants must be separated by commas. Strings are usually (but not always) enclosed in quotation marks. However, if a string includes commas or blank spaces as a part of the string, it must be enclosed in quotation marks. Consecutive strings that are enclosed in quotation marks need not be separated by commas.
