
UNIT5

Probabilistic Information Retrieval

Probabilistic Information Retrieval- Review of basic probability theory, Probability ranking

principle, Binary independence model, Probability estimates, Text Classification- Rocchio

classifier, KNearest neighbor classifier, Linear and nonlinear classifiers. Text Clustering-

Clustering in information retrieval, Evaluation of clustering

Review of basic probability theory

We hope that the reader has seen a little basic probability theory previously. We will give a

very quick review; some references for further reading appear at the end of the chapter. A

variable represents an event (a subset of the space of possible outcomes). Equivalently,

we can represent the subset via a random variable , which is a function from outcomes to real

numbers; the subset is the domain over which the random variable has a particular value.

Often we will not know with certainty whether an event is true in the world. We can ask the

probability of the event . For two events and , the joint event of both

events occurring is described by the joint probability . The conditional

probability expresses the probability of event given that event occurred. The

fundamental relationship between joint and conditional probabilities is given by the chain

rule :

(56)

Without making any assumptions, the probability of a joint event equals the probability of

one of the events multiplied by the probability of the other event conditioned on knowing the

first event happened.

Writing for the complement of an event, we similarly have:

(57)

Probability theory also has a partition rule , which says that if an event can be divided into

an exhaustive set of disjoint subcases, then the probability of is the sum of the

probabilities of the subcases. A special case of this rule gives that:

(58)

From these we can derive Bayes' Rule for inverting conditional probabilities:

(59)

This equation can also be thought of as a way of updating probabilities. We start off with an

initial estimate of how likely the event is when we do not have any other information; this

is the prior probability . Bayes' rule lets us derive a posterior probability after

having seen the evidence , based on the likelihood of occurring in the two cases that

 does or does not hold.

Finally, it is often useful to talk about the odds of an event, which provide a kind of multiplier

for how probabilities change:

The Probability Ranking Principle

The 1/0 loss case

We assume a ranked retrieval setup as in Section 6.3 , where there is a collection of

documents, the user issues a query, and an ordered list of documents is returned. We also

assume a binary notion of relevance as in Chapter 8 . For a query and a document in the

collection, let be an indicator random variable that says whether is relevant with

respect to a given query . That is, it takes on a value of 1 when the document is relevant

and 0 otherwise. In context we will often write just for .

Using a probabilistic model, the obvious order in which to present documents to the user is to

rank documents by their estimated probability of relevance with respect to the information

need: . This is the basis of the Probability Ranking Principle (PRP)

(van Rijsbergen, 1979, 113-114):

https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:vsm
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-in-information-retrieval-1.html#ch:evaluation
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#rij79
https://nlp.stanford.edu/IR-book/html/htmledition/footnode.html

``If a reference retrieval system's response to each request is a ranking of the documents in

the collection in order of decreasing probability of relevance to the user who submitted the

request, where the probabilities are estimated as accurately as possible on the basis of

whatever data have been made available to the system for this purpose, the overall

effectiveness of the system to its user will be the best that is obtainable on the basis of

those data.''

In the simplest case of the PRP, there are no retrieval costs or other utility concerns that

would differentially weight actions or errors. You lose a point for either returning a

nonrelevant document or failing to return a relevant document (such a binary situation

where you are evaluated on your accuracy is called 1/0 loss). The goal is to return the best

possible results as the top documents, for any value of the user chooses to examine.

The PRP then says to simply rank all documents in decreasing order of . If a

set of retrieval results is to be returned, rather than an ordering, the Bayes Optimal Decision

Rule , the decision which minimizes the risk of loss, is to simply return documents that are

more likely relevant than nonrelevant:

(61)

Theorem. The PRP is optimal, in the sense that it minimizes the expected loss (also known

as the Bayes risk) under 1/0 loss.

End theorem.

The PRP with retrieval costs

Suppose, instead, that we assume a model of retrieval costs. Let be the cost of not

retrieving a relevant document and the cost of retrieval of a nonrelevant document. Then

the Probability Ranking Principle says that if for a specific document and for all

documents not yet retrieved

(62)

then is the next document to be retrieved. Such a model gives a formal framework where

we can model differential costs of false positives and false negatives and even system

performance issues at the modeling stage, rather than simply at the evaluation stage, as we

did in Section 8.6 (page). However, we will not further consider loss/utility models in this

chapter.

The Binary Independence Model

The Binary Independence Model (BIM) we present in this section is the model that has

traditionally been used with the PRP. It introduces some simple assumptions, which make

estimating the probability function practical. Here, ``binary'' is equivalent to

Boolean: documents and queries are both represented as binary term incidence vectors. That

is, a document is represented by the vector where if term is

present in document and if is not present in . With this representation, many

possible documents have the same vector representation. Similarly, we represent by the

incidence vector (the distinction between and is less central since commonly is in

the form of a set of words). ``Independence'' means that terms are modeled as occurring in

documents independently. The model recognizes no association between terms. This

assumption is far from correct, but it nevertheless often gives satisfactory results in practice;

it is the ``naive'' assumption of Naive Bayes models, discussed further in

Section 13.4 (page). Indeed, the Binary Independence Model is exactly the same as the

multivariate Bernoulli Naive Bayes model presented in Section 13.3 (page). In a sense this

assumption is equivalent to an assumption of the vector space model, where each term is a

dimension that is orthogonal to all other terms.

We will first present a model which assumes that the user has a single step information need.

As discussed in Chapter 9 , seeing a range of results might let the user refine their

information need. Fortunately, as mentioned there, it is straightforward to extend the Binary

Independence Model so as to provide a framework for relevance feedback, and we present

this model in Section 11.3.4 .

To make a probabilistic retrieval strategy precise, we need to estimate how terms in

documents contribute to relevance, specifically, we wish to know how term frequency,

document frequency, document length, and other statistics that we can compute influence

judgments about document relevance, and how they can be reasonably combined to estimate

https://nlp.stanford.edu/IR-book/html/htmledition/a-broader-perspective-system-quality-and-user-utility-1.html#sec:user-utility
https://nlp.stanford.edu/IR-book/html/htmledition/properties-of-naive-bayes-1.html#sec:generativemodel2
https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html#sec:twomodels
https://nlp.stanford.edu/IR-book/html/htmledition/relevance-feedback-and-query-expansion-1.html#ch:queryexpansion
https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf
https://nlp.stanford.edu/IR-book/html/htmledition/a-broader-perspective-system-quality-and-user-utility-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/properties-of-naive-bayes-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

the probability of document relevance. We then order documents by decreasing estimated

probability of relevance.

We assume here that the relevance of each document is independent of the relevance of other

documents. As we noted in Section 8.5.1 (page), this is incorrect: the assumption is

especially harmful in practice if it allows a system to return duplicate or near duplicate

documents. Under the BIM, we model the probability that a document is relevant

via the probability in terms of term incidence vectors . Then, using Bayes rule, we

have:

(63)

(64)

Here, and are the probability that if a relevant or nonrelevant,

respectively, document is retrieved, then that document's representation is . You should

think of this quantity as defined with respect to a space of possible documents in a domain.

How do we compute all these probabilities? We never know the exact probabilities, and so

we have to use estimates: Statistics about the actual document collection are used to estimate

these probabilities. and indicate the prior probability of retrieving

a relevant or nonrelevant document respectively for a query . Again, if we knew the

percentage of relevant documents in the collection, then we could use this number to

estimate and . Since a document is either relevant or nonrelevant to

a query, we must have that:

(65)

Deriving a ranking function for query terms

Given a query , we wish to order returned documents by descending . Under

the BIM, this is modeled as ordering by . Rather than estimating this

probability directly, because we are interested only in the ranking of documents, we work

with some other quantities which are easier to compute and which give the same ordering of

documents. In particular, we can rank documents by their odds of relevance (as the odds of

https://nlp.stanford.edu/IR-book/html/htmledition/critiques-and-justifications-of-the-concept-of-relevance-1.html#sec:relevance
https://nlp.stanford.edu/IR-book/html/htmledition/critiques-and-justifications-of-the-concept-of-relevance-1.html

relevance is monotonic with the probability of relevance). This makes things easier, because

we can ignore the common denominator in Rxq-bayes, giving:

(66)

The left term in the rightmost expression of Equation 66 is a constant for a given query. Since

we are only ranking documents, there is thus no need for us to estimate it. The right-hand

term does, however, require estimation, and this initially appears to be difficult: How can we

accurately estimate the probability of an entire term incidence vector occurring? It is at this

point that we make the Naive Bayes conditional independence assumption that the presence

or absence of a word in a document is independent of the presence or absence of any other

word (given the query):

(67)

So:

(68)

Since each is either 0 or 1, we can separate the terms to give:

(69)

Henceforth, let be the probability of a term appearing in a

document relevant to the query, and be the probability of a term

appearing in a nonrelevant document. These quantities can be visualized in the following

https://nlp.stanford.edu/IR-book/html/htmledition/deriving-a-ranking-function-for-query-terms-1.html#odds1

contingency table where the columns add to 1:

Let us make an additional simplifying assumption that terms not occurring in the query are

equally likely to occur in relevant and nonrelevant documents: that is, if

 then . (This assumption can be changed, as when doing relevance feedback in

Section 11.3.4 .) Then we need only consider terms in the products that appear in the query,

and so,

(70)

The left product is over query terms found in the document and the right product is over

query terms not found in the document.

We can manipulate this expression by including the query terms found in the document into

the right product, but simultaneously dividing through by them in the left product, so the

value is unchanged. Then we have:

(71)

The left product is still over query terms found in the document, but the right product is

now over all query terms. That means that this right product is a constant for a particular

query, just like the odds . So the only quantity that needs to be estimated to rank

documents for relevance to a query is the left product. We can equally rank documents by

the logarithm of this term, since log is a monotonic function. The resulting quantity used for

ranking is called the Retrieval Status Value (RSV) in this model:

(72)

https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf

So everything comes down to computing the . Define :

(73)

The terms are log odds ratios for the terms in the query. We have the odds of the term

appearing if the document is relevant () and the odds of the term appearing if

the document is nonrelevant (). The odds ratio is the ratio of two such odds,

and then we finally take the log of that quantity. The value will be 0 if a term has equal odds

of appearing in relevant and nonrelevant documents, and positive if it is more likely to

appear in relevant documents. The quantities function as term weights in the model, and

the document score for a query is . Operationally, we sum them in

accumulators for query terms appearing in documents, just as for the vector space model

calculations discussed in Section 7.1 (page). We now turn to how we estimate these

 quantities for a particular collection and query.

Probability estimates in theory

For each term , what would these numbers look like for the whole collection? odds-

ratio-ct-contingency gives a contingency table of counts of documents in the collection,

where is the number of documents that contain term :

Using this, and and

https://nlp.stanford.edu/IR-book/html/htmledition/efficient-scoring-and-ranking-1.html#sec:heuristics
https://nlp.stanford.edu/IR-book/html/htmledition/efficient-scoring-and-ranking-1.html

(74)

To avoid the possibility of zeroes (such as if every or no relevant document has a particular

term) it is fairly standard to add to each of the quantities in the center 4 terms of odds-

ratio-ct-contingency, and then to adjust the marginal counts (the totals) accordingly (so, the

bottom right cell totals). Then we have:

(75)

Adding in this way is a simple form of smoothing. For trials with categorical outcomes

(such as noting the presence or absence of a term), one way to estimate the probability of an

event from data is simply to count the number of times an event occurred divided by the total

number of trials. This is referred to as the relative frequency of the event. Estimating the

probability as the relative frequency is the maximum likelihood estimate (or MLE), because

this value makes the observed data maximally likely. However, if we simply use the MLE,

then the probability given to events we happened to see is usually too high, whereas other

events may be completely unseen and giving them as a probability estimate their relative

frequency of 0 is both an underestimate, and normally breaks our models, since anything

multiplied by 0 is 0. Simultaneously decreasing the estimated probability of seen events and

increasing the probability of unseen events is referred to as smoothing . One simple way of

smoothing is to add a number to each of the observed counts.

These pseudocounts correspond to the use of a uniform distribution over the vocabulary as

a Bayesian prior , following Equation 59. We initially assume a uniform distribution over

events, where the size of denotes the strength of our belief in uniformity, and we then

update the probability based on observed events. Since our belief in uniformity is weak, we

use . This is a form of maximum a posteriori (MAP) estimation, where we choose the

most likely point value for probabilities based on the prior and the observed evidence,

following Equation 59. We will further discuss methods of smoothing estimated counts to

give probability models in Section 12.2.2 (page); the simple method of adding to each

observed count will do for now.

https://nlp.stanford.edu/IR-book/html/htmledition/review-of-basic-probability-theory-1.html#eqn:bayesrule
https://nlp.stanford.edu/IR-book/html/htmledition/review-of-basic-probability-theory-1.html#eqn:bayesrule
https://nlp.stanford.edu/IR-book/html/htmledition/estimating-the-query-generation-probability-1.html#sec:prob-smoothing
https://nlp.stanford.edu/IR-book/html/htmledition/estimating-the-query-generation-probability-1.html

Probability estimates in practice

Under the assumption that relevant documents are a very small percentage of the

collection, it is plausible to approximate statistics for nonrelevant documents by statistics

from the whole collection. Under this assumption, (the probability of term occurrence in

nonrelevant documents for a query) is and

(76)

In other words, we can provide a theoretical justification for the most frequently used form

of idf weighting, which we saw in Section 6.2.1 .

The approximation technique in Equation 76 cannot easily be extended to relevant

documents. The quantity can be estimated in various ways:

1. We can use the frequency of term occurrence in known relevant documents (if we
know some). This is the basis of probabilistic approaches to relevance feedback
weighting in a feedback loop, discussed in the next subsection.

2. Croft and Harper (1979) proposed using a constant in their combination match

model. For instance, we might assume that is constant over all terms in the

query and that . This means that each term has even odds of appearing in a

relevant document, and so the and factors cancel out in the expression

for . Such an estimate is weak, but doesn't disagree violently with our hopes
for the search terms appearing in many but not all relevant documents. Combining

this method with our earlier approximation for , the document ranking is
determined simply by which query terms occur in documents scaled by their idf
weighting. For short documents (titles or abstracts) in situations in which iterative
searching is undesirable, using this weighting term alone can be quite satisfactory,
although in many other circumstances we would like to do better.

3. Greiff (1998) argues that the constant estimate of in the Croft and Harper
(1979) model is theoretically problematic and not observed empirically: as might be

expected, is shown to rise with . Based on his data analysis, a plausible

proposal would be to use the estimate .

https://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html#sec:idf
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-practice-1.html#prob-idf
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#croftharper79
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#greiff98eda
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#croftharper79
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#croftharper79
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#croftharper79

Iterative methods of estimation, which combine some of the above ideas, are discussed in the

next subsection.

Probabilistic approaches to relevance feedback

We can use (pseudo-)relevance feedback, perhaps in an iterative process of estimation, to get

a more accurate estimate of . The probabilistic approach to relevance feedback works as

follows:

1. Guess initial estimates of and . This can be done using the probability

estimates of the previous section. For instance, we can assume that is constant

over all in the query, in particular, perhaps taking .

2. Use the current estimates of and to determine a best guess at the set of

relevant documents . Use this model to retrieve a set of
candidate relevant documents, which we present to the user.

3. We interact with the user to refine the model of . We do this by learning from the

user relevance judgments for some subset of documents . Based on relevance

judgments, is partitioned into two subsets:

 and , which is disjoint from .

4. We reestimate and on the basis of known relevant and nonrelevant

documents. If the sets and are large enough, we may be able to estimate
these quantities directly from these documents as maximum likelihood estimates:

(77)

5.

6. (where is the set of documents in containing). In practice, we usually

need to smooth these estimates. We can do this by adding to both the

count and to the number of relevant documents not containing the term,
giving:

(78)

7.

8. However, the set of documents judged by the user () is usually very small, and so
the resulting statistical estimate is quite unreliable (noisy), even if the estimate is
smoothed. So it is often better to combine the new information with the original
guess in a process of Bayesian updating . In this case we have:

(79)

9.

10. Here is the estimate for in an iterative updating process and is used as a

Bayesian prior in the next iteration with a weighting of . Relating this equation back

to Equation 59 requires a bit more probability theory than we have presented here (we

need to use a beta distribution prior, conjugate to the Bernoulli random variable).

But the form of the resulting equation is quite straightforward: rather than uniformly

distributing pseudocounts, we now distribute a total of pseudocounts according to

the previous estimate, which acts as the prior distribution. In the absence of other

evidence (and assuming that the user is perhaps indicating roughly 5 relevant or

nonrelevant documents) then a value of around is perhaps appropriate. That is,

the prior is strongly weighted so that the estimate does not change too much from the

evidence provided by a very small number of documents.

11. Repeat the above process from step 2, generating a succession of approximations

to and hence , until the user is satisfied.

It is also straightforward to derive a pseudo-relevance feedback version of this algorithm,

where we simply pretend that . More briefly:

1. Assume initial estimates for and as above.
2. Determine a guess for the size of the relevant document set. If unsure, a

conservative (too small) guess is likely to be best. This motivates use of a fixed size

set of highest ranked documents.

https://nlp.stanford.edu/IR-book/html/htmledition/review-of-basic-probability-theory-1.html#eqn:bayesrule

3. Improve our guesses for and . We choose from the methods of and 79 for re-

estimating , except now based on the set instead of . If we let be the

subset of documents in containing and use add smoothing , we get:

(80)

4.

5. and if we assume that documents that are not retrieved are nonrelevant then we

can update our estimates as:

(81)

6.

7. Go to step 2 until the ranking of the returned results converges.

Once we have a real estimate for then the weights used in the value look almost

like a tf-idf value. For instance, using Equation 73, Equation 76, and Equation 80, we have:

(82)

But things aren't quite the same: measures the (estimated) proportion of

relevant documents that the term occurs in, not term frequency. Moreover, if we apply

log identities:

(83)

https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#probrf-bayesian
https://nlp.stanford.edu/IR-book/html/htmledition/deriving-a-ranking-function-for-query-terms-1.html#odds-ratio-ct
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-practice-1.html#prob-idf
https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#pseudorf-addhalf

we see that we are now adding the two log scaled components rather than multiplying

them.

An appraisal and some extensions

An appraisal of probabilistic models

Probabilistic methods are one of the oldest formal models in IR. Already in the 1970s they

were held out as an opportunity to place IR on a firmer theoretical footing, and with the

resurgence of probabilistic methods in computational linguistics in the 1990s, that hope has

returned, and probabilistic methods are again one of the currently hottest topics in IR.

Traditionally, probabilistic IR has had neat ideas but the methods have never won on

performance. Getting reasonable approximations of the needed probabilities for a

probabilistic IR model is possible, but it requires some major assumptions. In the BIM these

are:

 a Boolean representation of documents/queries/relevance
 term independence
 terms not in the query don't affect the outcome
 document relevance values are independent

It is perhaps the severity of the modeling assumptions that makes achieving good

performance difficult. A general problem seems to be that probabilistic models either

require partial relevance information or else only allow for deriving apparently inferior term

weighting models.

Things started to change in the 1990s when the BM25 weighting scheme, which we discuss

in the next section, showed very good performance, and started to be adopted as a term

weighting scheme by many groups. The difference between ``vector space'' and

``probabilistic'' IR systems is not that great: in either case, you build an information retrieval

scheme in the exact same way that we discussed in Chapter 7 . For a probabilistic IR system,

it's just that, at the end, you score queries not by cosine similarity and tf-idf in a vector space,

but by a slightly different formula motivated by probability theory. Indeed, sometimes people

have changed an existing vector-space IR system into an effectively probabilistic system

simply by adopted term weighting formulas from probabilistic models. In this section, we

briefly present three extensions of the traditional probabilistic model, and in the next chapter,

we look at the somewhat different probabilistic language modeling approach to IR.

https://nlp.stanford.edu/IR-book/html/htmledition/computing-scores-in-a-complete-search-system-1.html#ch:ranking-ir-system

Tree-structured dependencies between terms

Some of the assumptions of the BIM can be removed. For example, we can remove the

assumption that terms are independent. This assumption is very far from true in practice. A

case that particularly violates this assumption is term pairs like Hong and Kong, which are

strongly dependent. But dependencies can occur in various complex configurations, such as

between the set of terms New, York, England, City, Stock, Exchange, and

University. van Rijsbergen (1979) proposed a simple, plausible model which allowed a tree

structure of term dependencies, as in Figure 11.1 . In this model each term can be directly

dependent on only one other term, giving a tree structure of dependencies. When it was

invented in the 1970s, estimation problems held back the practical success of this model, but

the idea was reinvented as the Tree Augmented Naive Bayes model by Friedman and

Goldszmidt (1996), who used it with some success on various machine learning data sets

Okapi BM25: a non-binary model

The BIM was originally designed for short catalog records and abstracts of fairly consistent

length, and it works reasonably in these contexts, but for modern full-text search collections,

it seems clear that a model should pay attention to term frequency and document length, as in

Chapter 6 . The BM25 weighting scheme , often called Okapi weighting , after the system in

which it was first implemented, was developed as a way of building a probabilistic model

sensitive to these quantities while not introducing too many additional parameters into the

model (Spärck Jones et al., 2000). We will not develop the full theory behind the model here,

but just present a series of forms that build up to the standard form now used for document

https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#rij79
https://nlp.stanford.edu/IR-book/html/htmledition/tree-structured-dependencies-between-terms-1.html#fig:rijsbergen-tree
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#friedman96tan
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#friedman96tan
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#friedman96tan
https://nlp.stanford.edu/IR-book/html/htmledition/scoring-term-weighting-and-the-vector-space-model-1.html#ch:tfidf
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#sparckjones00probabilistic

scoring. The simplest score for document is just idf weighting of the query terms present,

as in Equation 76:

(84)

Sometimes, an alternative version of idf is used. If we start with the formula in

Equation 75 but in the absence of relevance feedback information we estimate

that , then we get an alternative idf formulation as follows:

(85)

This variant behaves slightly strangely: if a term occurs in over half the documents

in the collection then this model gives a negative term weight, which is

presumably undesirable. But, assuming the use of a stop list, this normally doesn't

happen, and the value for each summand can be given a floor of 0.

We can improve on Equation 84 by factoring in the frequency of each term and

document length:

(86)

Here, is the frequency of term in document , and and are the

length of document and the average document length for the whole collection.

The variable is a positive tuning parameter that calibrates the document term

frequency scaling. A value of 0 corresponds to a binary model (no term

https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-practice-1.html#prob-idf
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-theory-1.html#smoothed-rf
https://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html#bm25-1

frequency), and a large value corresponds to using raw term frequency. is

another tuning parameter () which determines the scaling by document

length: corresponds to fully scaling the term weight by the document

length, while corresponds to no length normalization.

If the query is long, then we might also use similar weighting for query terms. This

is appropriate if the queries are paragraph long information needs, but unnecessary

for short queries.

(87)

with being the frequency of term in the query , and being another

positive tuning parameter that this time calibrates term frequency scaling of the

query. In the equation presented, there is no length normalization of queries (it is

as if here). Length normalization of the query is unnecessary because

retrieval is being done with respect to a single fixed query. The tuning parameters

of these formulas should ideally be set to optimize performance on a

development test collection (see page 8.1). That is, we can search for values of

these parameters that maximize performance on a separate development test

collection (either manually or with optimization methods such as grid search or

something more advanced), and then use these parameters on the actual test

collection. In the absence of such optimization, experiments have shown

reasonable values are to set and to a value between 1.2 and 2 and

.

If we have relevance judgments available, then we can use the full form of smoothed-rf in

place of the approximation introduced in prob-idf:

https://nlp.stanford.edu/IR-book/html/htmledition/information-retrieval-system-evaluation-1.html#p:dev-test

(88)

(89)

Here, , , and are used as in Section 11.3.4 . The first part of the expression

reflects relevance feedback (or just idf weighting if no relevance information is available),

the second implements document term frequency and document length scaling, and the

third considers term frequency in the query.

Rather than just providing a term weighting method for terms in a user's query, relevance

feedback can also involve augmenting the query (automatically or with manual review) with

some (say, 10-20) of the top terms in the known-relevant documents as ordered by the

relevance factor from Equation 75, and the above formula can then be used with such an

augmented query vector .

The BM25 term weighting formulas have been used quite widely and quite successfully

across a range of collections and search tasks. Especially in the TREC evaluations, they

performed well and were widely adopted by many groups. See Spärck Jones et al. (2000) for

extensive motivation and discussion of experimental results.

Bayesian network approaches to IR

Turtle and Croft (1989;1991) introduced into information retrieval the use of Bayesian

networks (Jensen and Jensen, 2001), a form of probabilistic graphical model. We skip the

details because fully introducing the formalism of Bayesian networks would require much too

much space, but conceptually, Bayesian networks use directed graphs to show probabilistic

dependencies between variables, as in Figure 11.1 , and have led to the development of

sophisticated algorithms for propagating influence so as to allow learning and inference with

arbitrary knowledge within arbitrary directed acyclic graphs. Turtle and Croft used a

sophisticated network to better model the complex dependencies between a document and a

user's information need.

The model decomposes into two parts: a document collection network and a query network.

The document collection network is large, but can be precomputed: it maps from documents

to terms to concepts. The concepts are a thesaurus-based expansion of the terms appearing in

the document. The query network is relatively small but a new network needs to be built each

time a query comes in, and then attached to the document network. The query network maps

https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-theory-1.html#smoothed-rf
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#sparckjones00probabilistic
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#turtle89
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#turtle91
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#jensen01bayesian
https://nlp.stanford.edu/IR-book/html/htmledition/tree-structured-dependencies-between-terms-1.html#fig:rijsbergen-tree

from query terms, to query subexpressions (built using probabilistic or ``noisy'' versions of

AND and OR operators), to the user's information need.

The result is a flexible probabilistic network which can generalize various simpler Boolean

and probabilistic models. Indeed, this is the primary case of a statistical ranked retrieval

model that naturally supports structured query operators. The system allowed efficient large-

scale retrieval, and was the basis of the InQuery text retrieval system, built at the University

of Massachusetts. This system performed very well in TREC evaluations and for a time was

sold commercially. On the other hand, the model still used various approximations and

independence assumptions to make parameter estimation and computation possible. There

has not been much follow-on work along these lines, but we would note that this model was

actually built very early on in the modern era of using Bayesian networks, and there have

been many subsequent developments in the theory, and the time is perhaps right for a new

generation of Bayesian network-based information retrieval systems.

