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Review of basic probability theory 

We hope that the reader has seen a little basic probability theory previously. We will give a 

very quick review; some references for further reading appear at the end of the chapter. A 

variable  represents an event (a subset of the space of possible outcomes). Equivalently, 

we can represent the subset via a random variable , which is a function from outcomes to real 

numbers; the subset is the domain over which the random variable  has a particular value. 

Often we will not know with certainty whether an event is true in the world. We can ask the 

probability of the event . For two events  and , the joint event of both 

events occurring is described by the joint probability . The conditional 

probability  expresses the probability of event  given that event  occurred. The 

fundamental relationship between joint and conditional probabilities is given by the chain 

rule : 

 

(56) 

 

 

Without making any assumptions, the probability of a joint event equals the probability of 

one of the events multiplied by the probability of the other event conditioned on knowing the 

first event happened. 

Writing  for the complement of an event, we similarly have: 

 

(57) 

 

 

Probability theory also has a partition rule , which says that if an event  can be divided into 

an exhaustive set of disjoint subcases, then the probability of  is the sum of the 

probabilities of the subcases. A special case of this rule gives that: 

 

(58) 



 

 

From these we can derive Bayes' Rule for inverting conditional probabilities: 

 

(59) 

 

 

This equation can also be thought of as a way of updating probabilities. We start off with an 

initial estimate of how likely the event  is when we do not have any other information; this 

is the prior probability . Bayes' rule lets us derive a posterior probability  after 

having seen the evidence , based on the likelihood of  occurring in the two cases that 

 does or does not hold.  

Finally, it is often useful to talk about the odds of an event, which provide a kind of multiplier 

for how probabilities change: 

 

 

 

The Probability Ranking Principle 

The 1/0 loss case 

We assume a ranked retrieval setup as in Section 6.3 , where there is a collection of 

documents, the user issues a query, and an ordered list of documents is returned. We also 

assume a binary notion of relevance as in Chapter 8 . For a query  and a document  in the 

collection, let  be an indicator random variable that says whether  is relevant with 

respect to a given query . That is, it takes on a value of 1 when the document is relevant 

and 0 otherwise. In context we will often write just  for . 

Using a probabilistic model, the obvious order in which to present documents to the user is to 

rank documents by their estimated probability of relevance with respect to the information 

need: . This is the basis of the Probability Ranking Principle (PRP) 

(van Rijsbergen, 1979, 113-114): 
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``If a reference retrieval system's response to each request is a ranking of the documents in 

the collection in order of decreasing probability of relevance to the user who submitted the 

request, where the probabilities are estimated as accurately as possible on the basis of 

whatever data have been made available to the system for this purpose, the overall 

effectiveness of the system to its user will be the best that is obtainable on the basis of 

those data.'' 

In the simplest case of the PRP, there are no retrieval costs or other utility concerns that 

would differentially weight actions or errors. You lose a point for either returning a 

nonrelevant document or failing to return a relevant document (such a binary situation 

where you are evaluated on your accuracy is called 1/0 loss ). The goal is to return the best 

possible results as the top  documents, for any value of  the user chooses to examine. 

The PRP then says to simply rank all documents in decreasing order of . If a 

set of retrieval results is to be returned, rather than an ordering, the Bayes Optimal Decision 

Rule , the decision which minimizes the risk of loss, is to simply return documents that are 

more likely relevant than nonrelevant: 

 

(61) 

 

 

Theorem. The PRP is optimal, in the sense that it minimizes the expected loss (also known 

as the Bayes risk ) under 1/0 loss. 

End theorem. 

 

 

The PRP with retrieval costs 

Suppose, instead, that we assume a model of retrieval costs. Let  be the cost of not 

retrieving a relevant document and  the cost of retrieval of a nonrelevant document. Then 

the Probability Ranking Principle says that if for a specific document  and for all 

documents  not yet retrieved 

 

(62) 



 

 

then  is the next document to be retrieved. Such a model gives a formal framework where 

we can model differential costs of false positives and false negatives and even system 

performance issues at the modeling stage, rather than simply at the evaluation stage, as we 

did in Section 8.6 (page ). However, we will not further consider loss/utility models in this 

chapter. 

 

 

The Binary Independence Model 

The Binary Independence Model (BIM) we present in this section is the model that has 

traditionally been used with the PRP. It introduces some simple assumptions, which make 

estimating the probability function  practical. Here, ``binary'' is equivalent to 

Boolean: documents and queries are both represented as binary term incidence vectors. That 

is, a document  is represented by the vector  where  if term  is 

present in document  and  if  is not present in . With this representation, many 

possible documents have the same vector representation. Similarly, we represent  by the 

incidence vector  (the distinction between  and  is less central since commonly  is in 

the form of a set of words). ``Independence'' means that terms are modeled as occurring in 

documents independently. The model recognizes no association between terms. This 

assumption is far from correct, but it nevertheless often gives satisfactory results in practice; 

it is the ``naive'' assumption of Naive Bayes models, discussed further in 

Section 13.4 (page ). Indeed, the Binary Independence Model is exactly the same as the 

multivariate Bernoulli Naive Bayes model presented in Section 13.3 (page ). In a sense this 

assumption is equivalent to an assumption of the vector space model, where each term is a 

dimension that is orthogonal to all other terms. 

We will first present a model which assumes that the user has a single step information need. 

As discussed in Chapter 9 , seeing a range of results might let the user refine their 

information need. Fortunately, as mentioned there, it is straightforward to extend the Binary 

Independence Model so as to provide a framework for relevance feedback, and we present 

this model in Section 11.3.4 . 

To make a probabilistic retrieval strategy precise, we need to estimate how terms in 

documents contribute to relevance, specifically, we wish to know how term frequency, 

document frequency, document length, and other statistics that we can compute influence 

judgments about document relevance, and how they can be reasonably combined to estimate 

https://nlp.stanford.edu/IR-book/html/htmledition/a-broader-perspective-system-quality-and-user-utility-1.html#sec:user-utility
https://nlp.stanford.edu/IR-book/html/htmledition/properties-of-naive-bayes-1.html#sec:generativemodel2
https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html#sec:twomodels
https://nlp.stanford.edu/IR-book/html/htmledition/relevance-feedback-and-query-expansion-1.html#ch:queryexpansion
https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf
https://nlp.stanford.edu/IR-book/html/htmledition/a-broader-perspective-system-quality-and-user-utility-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/properties-of-naive-bayes-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html


the probability of document relevance. We then order documents by decreasing estimated 

probability of relevance. 

We assume here that the relevance of each document is independent of the relevance of other 

documents. As we noted in Section 8.5.1 (page ), this is incorrect: the assumption is 

especially harmful in practice if it allows a system to return duplicate or near duplicate 

documents. Under the BIM, we model the probability  that a document is relevant 

via the probability in terms of term incidence vectors . Then, using Bayes rule, we 

have: 

 

 

 

(63) 

 

 

 

(64) 

 

 

Here,  and  are the probability that if a relevant or nonrelevant, 

respectively, document is retrieved, then that document's representation is . You should 

think of this quantity as defined with respect to a space of possible documents in a domain. 

How do we compute all these probabilities? We never know the exact probabilities, and so 

we have to use estimates: Statistics about the actual document collection are used to estimate 

these probabilities.  and  indicate the prior probability of retrieving 

a relevant or nonrelevant document respectively for a query . Again, if we knew the 

percentage of relevant documents in the collection, then we could use this number to 

estimate  and . Since a document is either relevant or nonrelevant to 

a query, we must have that: 

 

(65) 

 

 

Deriving a ranking function for query terms 

Given a query , we wish to order returned documents by descending . Under 

the BIM, this is modeled as ordering by . Rather than estimating this 

probability directly, because we are interested only in the ranking of documents, we work 

with some other quantities which are easier to compute and which give the same ordering of 

documents. In particular, we can rank documents by their odds of relevance (as the odds of 
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relevance is monotonic with the probability of relevance). This makes things easier, because 

we can ignore the common denominator in Rxq-bayes, giving: 

 

(66) 

 

 

The left term in the rightmost expression of Equation 66 is a constant for a given query. Since 

we are only ranking documents, there is thus no need for us to estimate it. The right-hand 

term does, however, require estimation, and this initially appears to be difficult: How can we 

accurately estimate the probability of an entire term incidence vector occurring? It is at this 

point that we make the Naive Bayes conditional independence assumption that the presence 

or absence of a word in a document is independent of the presence or absence of any other 

word (given the query): 

 

(67) 

 

 

So: 

 

(68) 

 

 

Since each  is either 0 or 1, we can separate the terms to give: 

 

(69) 

 

 

Henceforth, let  be the probability of a term appearing in a 

document relevant to the query, and  be the probability of a term 

appearing in a nonrelevant document. These quantities can be visualized in the following 
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contingency table where the columns add to 1: 

 
 

Let us make an additional simplifying assumption that terms not occurring in the query are 

equally likely to occur in relevant and nonrelevant documents: that is, if 

 then . (This assumption can be changed, as when doing relevance feedback in 

Section 11.3.4 .) Then we need only consider terms in the products that appear in the query, 

and so, 

 

(70) 

 

 

The left product is over query terms found in the document and the right product is over 

query terms not found in the document. 

We can manipulate this expression by including the query terms found in the document into 

the right product, but simultaneously dividing through by them in the left product, so the 

value is unchanged. Then we have: 

 

(71) 

 

 

The left product is still over query terms found in the document, but the right product is 

now over all query terms. That means that this right product is a constant for a particular 

query, just like the odds . So the only quantity that needs to be estimated to rank 

documents for relevance to a query is the left product. We can equally rank documents by 

the logarithm of this term, since log is a monotonic function. The resulting quantity used for 

ranking is called the Retrieval Status Value (RSV) in this model: 

 

(72) 

https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf


 

 

So everything comes down to computing the . Define : 

 

(73) 

 

 

The  terms are log odds ratios for the terms in the query. We have the odds of the term 

appearing if the document is relevant ( ) and the odds of the term appearing if 

the document is nonrelevant ( ). The odds ratio is the ratio of two such odds, 

and then we finally take the log of that quantity. The value will be 0 if a term has equal odds 

of appearing in relevant and nonrelevant documents, and positive if it is more likely to 

appear in relevant documents. The  quantities function as term weights in the model, and 

the document score for a query is . Operationally, we sum them in 

accumulators for query terms appearing in documents, just as for the vector space model 

calculations discussed in Section 7.1 (page ). We now turn to how we estimate these 

 quantities for a particular collection and query. 

 

Probability estimates in theory 

For each term , what would these  numbers look like for the whole collection? odds-

ratio-ct-contingency gives a contingency table of counts of documents in the collection, 

where  is the number of documents that contain term : 

 

Using this,  and  and 
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(74) 

 

 

To avoid the possibility of zeroes (such as if every or no relevant document has a particular 

term) it is fairly standard to add  to each of the quantities in the center 4 terms of odds-

ratio-ct-contingency, and then to adjust the marginal counts (the totals) accordingly (so, the 

bottom right cell totals ). Then we have: 

 

(75) 

 

 

Adding  in this way is a simple form of smoothing. For trials with categorical outcomes 

(such as noting the presence or absence of a term), one way to estimate the probability of an 

event from data is simply to count the number of times an event occurred divided by the total 

number of trials. This is referred to as the relative frequency of the event. Estimating the 

probability as the relative frequency is the maximum likelihood estimate (or MLE ), because 

this value makes the observed data maximally likely. However, if we simply use the MLE, 

then the probability given to events we happened to see is usually too high, whereas other 

events may be completely unseen and giving them as a probability estimate their relative 

frequency of 0 is both an underestimate, and normally breaks our models, since anything 

multiplied by 0 is 0. Simultaneously decreasing the estimated probability of seen events and 

increasing the probability of unseen events is referred to as smoothing . One simple way of 

smoothing is to add a number  to each of the observed counts. 

These pseudocounts correspond to the use of a uniform distribution over the vocabulary as 

a Bayesian prior , following Equation 59. We initially assume a uniform distribution over 

events, where the size of  denotes the strength of our belief in uniformity, and we then 

update the probability based on observed events. Since our belief in uniformity is weak, we 

use . This is a form of maximum a posteriori ( MAP ) estimation, where we choose the 

most likely point value for probabilities based on the prior and the observed evidence, 

following Equation 59. We will further discuss methods of smoothing estimated counts to 

give probability models in Section 12.2.2 (page ); the simple method of adding  to each 

observed count will do for now. 
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Probability estimates in practice 

Under the assumption that relevant documents are a very small percentage of the 

collection, it is plausible to approximate statistics for nonrelevant documents by statistics 

from the whole collection. Under this assumption,  (the probability of term occurrence in 

nonrelevant documents for a query) is  and 

 

(76) 

 

 

In other words, we can provide a theoretical justification for the most frequently used form 

of idf weighting, which we saw in Section 6.2.1 . 

The approximation technique in Equation 76 cannot easily be extended to relevant 

documents. The quantity  can be estimated in various ways: 

1. We can use the frequency of term occurrence in known relevant documents (if we 
know some). This is the basis of probabilistic approaches to relevance feedback 
weighting in a feedback loop, discussed in the next subsection. 

2. Croft and Harper (1979) proposed using a constant in their combination match 

model. For instance, we might assume that  is constant over all terms  in the 

query and that . This means that each term has even odds of appearing in a 

relevant document, and so the  and  factors cancel out in the expression 

for . Such an estimate is weak, but doesn't disagree violently with our hopes 
for the search terms appearing in many but not all relevant documents. Combining 

this method with our earlier approximation for , the document ranking is 
determined simply by which query terms occur in documents scaled by their idf 
weighting. For short documents (titles or abstracts) in situations in which iterative 
searching is undesirable, using this weighting term alone can be quite satisfactory, 
although in many other circumstances we would like to do better. 

3. Greiff (1998) argues that the constant estimate of  in the Croft and Harper 
(1979) model is theoretically problematic and not observed empirically: as might be 

expected,  is shown to rise with . Based on his data analysis, a plausible 

proposal would be to use the estimate . 
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Iterative methods of estimation, which combine some of the above ideas, are discussed in the 

next subsection. 

Probabilistic approaches to relevance feedback 

We can use (pseudo-)relevance feedback, perhaps in an iterative process of estimation, to get 

a more accurate estimate of . The probabilistic approach to relevance feedback works as 

follows: 

1. Guess initial estimates of  and . This can be done using the probability 

estimates of the previous section. For instance, we can assume that  is constant 

over all  in the query, in particular, perhaps taking . 

2. Use the current estimates of  and  to determine a best guess at the set of 

relevant documents . Use this model to retrieve a set of 
candidate relevant documents, which we present to the user. 

3. We interact with the user to refine the model of . We do this by learning from the 

user relevance judgments for some subset of documents . Based on relevance 

judgments,  is partitioned into two subsets: 

 and , which is disjoint from . 

4. We reestimate  and  on the basis of known relevant and nonrelevant 

documents. If the sets  and  are large enough, we may be able to estimate 
these quantities directly from these documents as maximum likelihood estimates: 

 

(77) 

5.  
 

6. (where  is the set of documents in  containing ). In practice, we usually 

need to smooth these estimates. We can do this by adding  to both the 

count  and to the number of relevant documents not containing the term, 
giving: 



 

(78) 

7.  
 

8. However, the set of documents judged by the user ( ) is usually very small, and so 
the resulting statistical estimate is quite unreliable (noisy), even if the estimate is 
smoothed. So it is often better to combine the new information with the original 
guess in a process of Bayesian updating . In this case we have: 

 

(79) 

9.  
 

10. Here  is the  estimate for  in an iterative updating process and is used as a 

Bayesian prior in the next iteration with a weighting of . Relating this equation back 

to Equation 59 requires a bit more probability theory than we have presented here (we 

need to use a beta distribution prior, conjugate to the Bernoulli random variable ). 

But the form of the resulting equation is quite straightforward: rather than uniformly 

distributing pseudocounts, we now distribute a total of  pseudocounts according to 

the previous estimate, which acts as the prior distribution. In the absence of other 

evidence (and assuming that the user is perhaps indicating roughly 5 relevant or 

nonrelevant documents) then a value of around  is perhaps appropriate. That is, 

the prior is strongly weighted so that the estimate does not change too much from the 

evidence provided by a very small number of documents. 

11. Repeat the above process from step 2, generating a succession of approximations 

to  and hence , until the user is satisfied. 

It is also straightforward to derive a pseudo-relevance feedback version of this algorithm, 

where we simply pretend that . More briefly: 

1. Assume initial estimates for  and  as above. 
2. Determine a guess for the size of the relevant document set. If unsure, a 

conservative (too small) guess is likely to be best. This motivates use of a fixed size 

set  of highest ranked documents. 
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3. Improve our guesses for  and . We choose from the methods of and 79 for re-

estimating , except now based on the set  instead of . If we let  be the 

subset of documents in  containing  and use add  smoothing , we get: 

 

(80) 

4.  
 

5. and if we assume that documents that are not retrieved are nonrelevant then we 

can update our  estimates as: 

 

(81) 

6.  
 

7. Go to step 2 until the ranking of the returned results converges. 

Once we have a real estimate for  then the  weights used in the  value look almost 

like a tf-idf value. For instance, using Equation 73, Equation 76, and Equation 80, we have: 

 

(82) 

 

 

But things aren't quite the same:  measures the (estimated) proportion of 

relevant documents that the term  occurs in, not term frequency. Moreover, if we apply 

log identities: 

 

(83) 
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we see that we are now adding the two log scaled components rather than multiplying 

them. 

 

 

An appraisal and some extensions 

An appraisal of probabilistic models 

Probabilistic methods are one of the oldest formal models in IR. Already in the 1970s they 

were held out as an opportunity to place IR on a firmer theoretical footing, and with the 

resurgence of probabilistic methods in computational linguistics in the 1990s, that hope has 

returned, and probabilistic methods are again one of the currently hottest topics in IR. 

Traditionally, probabilistic IR has had neat ideas but the methods have never won on 

performance. Getting reasonable approximations of the needed probabilities for a 

probabilistic IR model is possible, but it requires some major assumptions. In the BIM these 

are: 

 a Boolean representation of documents/queries/relevance 
 term independence 
 terms not in the query don't affect the outcome 
 document relevance values are independent 

It is perhaps the severity of the modeling assumptions that makes achieving good 

performance difficult. A general problem seems to be that probabilistic models either 

require partial relevance information or else only allow for deriving apparently inferior term 

weighting models. 

Things started to change in the 1990s when the BM25 weighting scheme, which we discuss 

in the next section, showed very good performance, and started to be adopted as a term 

weighting scheme by many groups. The difference between ``vector space'' and 

``probabilistic'' IR systems is not that great: in either case, you build an information retrieval 

scheme in the exact same way that we discussed in Chapter 7 . For a probabilistic IR system, 

it's just that, at the end, you score queries not by cosine similarity and tf-idf in a vector space, 

but by a slightly different formula motivated by probability theory. Indeed, sometimes people 

have changed an existing vector-space IR system into an effectively probabilistic system 

simply by adopted term weighting formulas from probabilistic models. In this section, we 

briefly present three extensions of the traditional probabilistic model, and in the next chapter, 

we look at the somewhat different probabilistic language modeling approach to IR. 
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Tree-structured dependencies between terms 

 

Some of the assumptions of the BIM can be removed. For example, we can remove the 

assumption that terms are independent. This assumption is very far from true in practice. A 

case that particularly violates this assumption is term pairs like Hong and Kong, which are 

strongly dependent. But dependencies can occur in various complex configurations, such as 

between the set of terms New, York, England, City, Stock, Exchange, and 

University. van Rijsbergen (1979) proposed a simple, plausible model which allowed a tree 

structure of term dependencies, as in Figure 11.1 . In this model each term can be directly 

dependent on only one other term, giving a tree structure of dependencies. When it was 

invented in the 1970s, estimation problems held back the practical success of this model, but 

the idea was reinvented as the Tree Augmented Naive Bayes model by Friedman and 

Goldszmidt (1996), who used it with some success on various machine learning data sets 

 

 

 

 

Okapi BM25: a non-binary model 

The BIM was originally designed for short catalog records and abstracts of fairly consistent 

length, and it works reasonably in these contexts, but for modern full-text search collections, 

it seems clear that a model should pay attention to term frequency and document length, as in 

Chapter 6 . The BM25 weighting scheme , often called Okapi weighting , after the system in 

which it was first implemented, was developed as a way of building a probabilistic model 

sensitive to these quantities while not introducing too many additional parameters into the 

model (Spärck Jones et al., 2000). We will not develop the full theory behind the model here, 

but just present a series of forms that build up to the standard form now used for document 
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scoring. The simplest score for document  is just idf weighting of the query terms present, 

as in Equation 76: 

 

(84) 

 

 

Sometimes, an alternative version of idf is used. If we start with the formula in 

Equation 75 but in the absence of relevance feedback information we estimate 

that , then we get an alternative idf formulation as follows: 

 

(85) 

 

 

This variant behaves slightly strangely: if a term occurs in over half the documents 

in the collection then this model gives a negative term weight, which is 

presumably undesirable. But, assuming the use of a stop list, this normally doesn't 

happen, and the value for each summand can be given a floor of 0. 

We can improve on Equation 84 by factoring in the frequency of each term and 

document length: 

 

(86) 

 

 

Here,  is the frequency of term  in document , and  and  are the 

length of document  and the average document length for the whole collection. 

The variable  is a positive tuning parameter that calibrates the document term 

frequency scaling. A  value of 0 corresponds to a binary model (no term 
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frequency), and a large value corresponds to using raw term frequency.  is 

another tuning parameter ( ) which determines the scaling by document 

length:  corresponds to fully scaling the term weight by the document 

length, while  corresponds to no length normalization. 

If the query is long, then we might also use similar weighting for query terms. This 

is appropriate if the queries are paragraph long information needs, but unnecessary 

for short queries. 

 

(87) 

 

 

with  being the frequency of term  in the query , and  being another 

positive tuning parameter that this time calibrates term frequency scaling of the 

query. In the equation presented, there is no length normalization of queries (it is 

as if  here). Length normalization of the query is unnecessary because 

retrieval is being done with respect to a single fixed query. The tuning parameters 

of these formulas should ideally be set to optimize performance on a 

development test collection (see page 8.1 ). That is, we can search for values of 

these parameters that maximize performance on a separate development test 

collection (either manually or with optimization methods such as grid search or 

something more advanced), and then use these parameters on the actual test 

collection. In the absence of such optimization, experiments have shown 

reasonable values are to set  and  to a value between 1.2 and 2 and 

. 

If we have relevance judgments available, then we can use the full form of smoothed-rf in 

place of the approximation  introduced in prob-idf: 

https://nlp.stanford.edu/IR-book/html/htmledition/information-retrieval-system-evaluation-1.html#p:dev-test
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Here, , , and  are used as in Section 11.3.4 . The first part of the expression 

reflects relevance feedback (or just idf weighting if no relevance information is available), 

the second implements document term frequency and document length scaling, and the 

third considers term frequency in the query. 

Rather than just providing a term weighting method for terms in a user's query, relevance 

feedback can also involve augmenting the query (automatically or with manual review) with 

some (say, 10-20) of the top terms in the known-relevant documents as ordered by the 

relevance factor  from Equation 75, and the above formula can then be used with such an 

augmented query vector . 

The BM25 term weighting formulas have been used quite widely and quite successfully 

across a range of collections and search tasks. Especially in the TREC evaluations, they 

performed well and were widely adopted by many groups. See Spärck Jones et al. (2000) for 

extensive motivation and discussion of experimental results. 

 

Bayesian network approaches to IR 

Turtle and Croft (1989;1991) introduced into information retrieval the use of Bayesian 

networks (Jensen and Jensen, 2001), a form of probabilistic graphical model. We skip the 

details because fully introducing the formalism of Bayesian networks would require much too 

much space, but conceptually, Bayesian networks use directed graphs to show probabilistic 

dependencies between variables, as in Figure 11.1 , and have led to the development of 

sophisticated algorithms for propagating influence so as to allow learning and inference with 

arbitrary knowledge within arbitrary directed acyclic graphs. Turtle and Croft used a 

sophisticated network to better model the complex dependencies between a document and a 

user's information need. 

The model decomposes into two parts: a document collection network and a query network. 

The document collection network is large, but can be precomputed: it maps from documents 

to terms to concepts. The concepts are a thesaurus-based expansion of the terms appearing in 

the document. The query network is relatively small but a new network needs to be built each 

time a query comes in, and then attached to the document network. The query network maps 

https://nlp.stanford.edu/IR-book/html/htmledition/probabilistic-approaches-to-relevance-feedback-1.html#sec:probrf
https://nlp.stanford.edu/IR-book/html/htmledition/probability-estimates-in-theory-1.html#smoothed-rf
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#sparckjones00probabilistic
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#turtle89
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#turtle91
https://nlp.stanford.edu/IR-book/html/htmledition/bibliography-1.html#jensen01bayesian
https://nlp.stanford.edu/IR-book/html/htmledition/tree-structured-dependencies-between-terms-1.html#fig:rijsbergen-tree


from query terms, to query subexpressions (built using probabilistic or ``noisy'' versions of 

AND and OR operators), to the user's information need. 

The result is a flexible probabilistic network which can generalize various simpler Boolean 

and probabilistic models. Indeed, this is the primary case of a statistical ranked retrieval 

model that naturally supports structured query operators. The system allowed efficient large-

scale retrieval, and was the basis of the InQuery text retrieval system, built at the University 

of Massachusetts. This system performed very well in TREC evaluations and for a time was 

sold commercially. On the other hand, the model still used various approximations and 

independence assumptions to make parameter estimation and computation possible. There 

has not been much follow-on work along these lines, but we would note that this model was 

actually built very early on in the modern era of using Bayesian networks, and there have 

been many subsequent developments in the theory, and the time is perhaps right for a new 

generation of Bayesian network-based information retrieval systems. 

 

 


