UNIT-II
[bookmark: _GoBack]ER model
· ER model stands for an Entity-Relationship model. It is a high-level data model. This model is used to define the data elements and relationship for a specified system.
· It develops a conceptual design for the database. It also develops a very simple and easy to design view of data.
· In ER modeling, the database structure is portrayed as a diagram called an entity-relationship diagram.
For example, Suppose we design a school database. In this database, the student will be an entity with attributes like address, name, id, age, etc. The address can be another entity with attributes like city, street name, pin code, etc and there will be a relationship between them.

[image: DBMS ER model concept]

Component of ER Diagram

[image: DBMS ER model concept]

1. Entity:
An entity may be any object, class, person or place. In the ER diagram, an entity can be represented as rectangles.
Consider an organization as an example- manager, product, employee, department etc. can be taken as an entity.

[image: DBMS ER model concept]

a. Weak Entity
An entity that depends on another entity called a weak entity. The weak entity doesn't contain any key attribute of its own. The weak entity is represented by a double rectangle.

[image: DBMS ER model concept]

2. Attribute
The attribute is used to describe the property of an entity. Eclipse is used to represent an attribute.
For example, id, age, contact number, name, etc. can be attributes of a student.

[image: DBMS ER model concept]

a. Key Attribute
The key attribute is used to represent the main characteristics of an entity. It represents a primary key. The key attribute is represented by an ellipse with the text underlined.

[image: DBMS ER model concept]

b. Composite Attribute
An attribute that composed of many other attributes is known as a composite attribute. The composite attribute is represented by an ellipse, and those ellipses are connected with an ellipse.

[image: DBMS ER model concept]

c. Multivalued Attribute
An attribute can have more than one value. These attributes are known as a multivalued attribute. The double oval is used to represent multivalued attribute.
For example, a student can have more than one phone number.

[image: DBMS ER model concept]

d. Derived Attribute
An attribute that can be derived from other attribute is known as a derived attribute. It can be represented by a dashed ellipse.
For example, A person's age changes over time and can be derived from another attribute like Date of birth.

[image: DBMS ER model concept]

3. Relationship
A relationship is used to describe the relation between entities. Diamond or rhombus is used to represent the relationship.

[image: DBMS ER model concept]

Types of relationship are as follows:
a. One-to-One Relationship
When only one instance of an entity is associated with the relationship, then it is known as one to one relationship.
For example, A female can marry to one male, and a male can marry to one female.

[image: DBMS ER model concept]

b. One-to-many relationship
When only one instance of the entity on the left, and more than one instance of an entity on the right associates with the relationship then this is known as a one-to-many relationship.
For example, Scientist can invent many inventions, but the invention is done by the only specific scientist.

[image: DBMS ER model concept]

c. Many-to-one relationship
When more than one instance of the entity on the left, and only one instance of an entity on the right associates with the relationship then it is known as a many-to-one relationship.
For example, Student enrolls for only one course, but a course can have many students.

[image: DBMS ER model concept]

d. Many-to-many relationship
When more than one instance of the entity on the left, and more than one instance of an entity on the right associates with the relationship then it is known as a many-to-many relationship.
For example, Employee can assign by many projects and project can have many employees.

[image: DBMS ER model concept]

Notation of ER diagram
Database can be represented using the notations. In ER diagram, many notations are used to express the cardinality. These notations are as follows:

[image: DBMS Notation of ER diagram]

Fig: Notations of ER diagram
Functional Dependency
The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.
1. X → Y
The left side of FD is known as a determinant, the right side of the production is known as a dependent.
For example:
Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.
Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the Emp_Id, we can tell that employee name associated with it.
Functional dependency can be written as:
1. Emp_Id → Emp_Name
We can say that Emp_Name is functionally dependent on Emp_Id.
Types of Functional dependency

[image: DBMS Functional Dependency]

1. Trivial functional dependency
· A → B has trivial functional dependency if B is a subset of A.
· The following dependencies are also trivial like: A → A, B → B
Example:
1. Consider a table with two columns Employee_Id and Employee_Name.
2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as
3. Employee_Id is a subset of {Employee_Id, Employee_Name}.
4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial dependencies too.
2. Non-trivial functional dependency
· A → B has a non-trivial functional dependency if B is not a subset of A.
· When A intersection B is NULL, then A → B is called as complete non-trivial.
Example:
1. ID → Name,
2. Name → DOB
3. Decomposition in DBMS removes redundancy, anomalies and inconsistencies from a database by dividing the table into multiple tables.
4. The following are the types −
5. Lossless Decomposition
6. Decomposition is lossless if it is feasible to reconstruct relation R from decomposed tables using Joins. This is the preferred choice. The information will not lose from the relation when decomposed. The join would result in the same original relation.
7. Let us see an example −
8. <EmpInfo>
	Emp_ID
	Emp_Name
	Emp_Age
	Emp_Location
	Dept_ID
	Dept_Name

	E001
	Jacob
	29
	Alabama
	Dpt1
	Operations

	E002
	Henry
	32
	Alabama
	Dpt2
	HR

	E003
	Tom
	22
	Texas
	Dpt3
	Finance

9. Decompose the above table into two tables:
10. <EmpDetails>
	Emp_ID
	Emp_Name
	Emp_Age
	Emp_Location

	E001
	Jacob
	29
	Alabama

	E002
	Henry
	32
	Alabama

	E003
	Tom
	22
	Texas

11. <DeptDetails>
	Dept_ID
	Emp_ID
	Dept_Name

	Dpt1
	E001
	Operations

	Dpt2
	E002
	HR

	Dpt3
	E003
	Finance

12. Now, Natural Join is applied on the above two tables −
13. The result will be −
	Emp_ID
	Emp_Name
	Emp_Age
	Emp_Location
	Dept_ID
	Dept_Name

	E001
	Jacob
	29
	Alabama
	Dpt1
	Operations

	E002
	Henry
	32
	Alabama
	Dpt2
	HR

	E003
	Tom
	22
	Texas
	Dpt3
	Finance

14. Therefore, the above relation had lossless decomposition i.e. no loss of information.
First Normal Form (1NF)
· A relation will be 1NF if it contains an atomic value.
· It states that an attribute of a table cannot hold multiple values. It must hold only single-valued attribute.
· First normal form disallows the multi-valued attribute, composite attribute, and their combinations.
Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute EMP_PHONE.
EMPLOYEE table:
	EMP_ID
	EMP_NAME
	EMP_PHONE
	EMP_STATE

	14
	John
	7272826385,
9064738238
	UP

	20
	Harry
	8574783832
	Bihar

	12
	Sam
	7390372389,
8589830302
	Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:
	EMP_ID
	EMP_NAME
	EMP_PHONE
	EMP_STATE

	14
	John
	7272826385
	UP

	14
	John
	9064738238
	UP

	20
	Harry
	8574783832
	Bihar

	12
	Sam
	7390372389
	Punjab

	12
	Sam
	8589830302
	Punjab

Second Normal Form (2NF)
· In the 2NF, relational must be in 1NF.
· In the second normal form, all non-key attributes are fully functional dependent on the primary key
Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a school, a teacher can teach more than one subject.
TEACHER table
	TEACHER_ID
	SUBJECT
	TEACHER_AGE

	25
	Chemistry
	30

	25
	Biology
	30

	47
	English
	35

	83
	Math
	38

	83
	Computer
	38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which is a proper subset of a candidate key. That's why it violates the rule for 2NF.
To convert the given table into 2NF, we decompose it into two tables:
TEACHER_DETAIL table:
	TEACHER_ID
	TEACHER_AGE

	25
	30

	47
	35

	83
	38

TEACHER_SUBJECT table:
	TEACHER_ID
	SUBJECT

	25
	Chemistry

	25
	Biology

	47
	English

	83
	Math

	83
	Computer

Third Normal Form (3NF)
· A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.
· 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.
· If there is no transitive dependency for non-prime attributes, then the relation must be in third normal form.
A relation is in third normal form if it holds atleast one of the following conditions for every non-trivial function dependency X → Y.
1. X is a super key.
2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.
Example:
EMPLOYEE_DETAIL table:
	EMP_ID
	EMP_NAME
	EMP_ZIP
	EMP_STATE
	EMP_CITY

	222
	Harry
	201010
	UP
	Noida

	333
	Stephan
	02228
	US
	Boston

	444
	Lan
	60007
	US
	Chicago

	555
	Katharine
	06389
	UK
	Norwich

	666
	John
	462007
	MP
	Bhopal

Super key in the table above:
1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on
Candidate key: {EMP_ID}
Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.
Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on super key(EMP_ID). It violates the rule of third normal form.
That's why we need to move the EMP_CITY and EMP_STATE to the new <EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.
EMPLOYEE table:
	EMP_ID
	EMP_NAME
	EMP_ZIP

	222
	Harry
	201010

	333
	Stephan
	02228

	444
	Lan
	60007

	555
	Katharine
	06389

	666
	John
	462007

EMPLOYEE_ZIP table:
	EMP_ZIP
	EMP_STATE
	EMP_CITY

	201010
	UP
	Noida

	02228
	US
	Boston

	60007
	US
	Chicago

	06389
	UK
	Norwich

	462007
	MP
	Bhopal

Boyce Codd normal form (BCNF)
· BCNF is the advance version of 3NF. It is stricter than 3NF.
· A table is in BCNF if every functional dependency X → Y, X is the super key of the table.
· For BCNF, the table should be in 3NF, and for every FD, LHS is super key.
Example: Let's assume there is a company where employees work in more than one department.
EMPLOYEE table:
	EMP_ID
	EMP_COUNTRY
	EMP_DEPT
	DEPT_TYPE
	EMP_DEPT_NO

	264
	India
	Designing
	D394
	283

	264
	India
	Testing
	D394
	300

	364
	UK
	Stores
	D283
	232

	364
	UK
	Developing
	D283
	549

In the above table Functional dependencies are as follows:
1. EMP_ID → EMP_COUNTRY
2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}
Candidate key: {EMP-ID, EMP-DEPT}
The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.
To convert the given table into BCNF, we decompose it into three tables:
EMP_COUNTRY table:
	EMP_ID
	EMP_COUNTRY

	264
	India

	264
	India

EMP_DEPT table:
	EMP_DEPT
	DEPT_TYPE
	EMP_DEPT_NO

	Designing
	D394
	283

	Testing
	D394
	300

	Stores
	D283
	232

	Developing
	D283
	549

EMP_DEPT_MAPPING table:
	EMP_ID
	EMP_DEPT

	D394
	283

	D394
	300

	D283
	232

	D283
	549

Functional dependencies:
1. EMP_ID → EMP_COUNTRY
2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}
Candidate keys:
For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}
Now, this is in BCNF because left side part of both the functional dependencies is a key.
Dependency Preserving
· It is an important constraint of the database.
· In the dependency preservation, at least one decomposed table must satisfy every dependency.
· If a relation R is decomposed into relation R1 and R2, then the dependencies of R either must be a part of R1 or R2 or must be derivable from the combination of functional dependencies of R1 and R2.
· For example, suppose there is a relation R (A, B, C, D) with functional dependency set (A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is dependency preserving because FD A->BC is a part of relation R1(ABC).

image5.png
Student

phone_no

image6.png
Student

phone_no

image7.png
Middle_name

image8.png
Phone_no.

image9.png
Student

Birth Date

image10.png
Teacher

teaches

Student

image11.png
Female

married to

Male

image12.png
Scientist

Invents

Invention

image13.png
Student

enroll

Course

image14.png
Employee

is assigned

Project

image15.png
one to one

—_——

one to many (mandatory)

—

many

B S——

one or more (mandatory)

T

one and only one (mandatory)

S —

Zero or one (optional)

SO

zero or many (optional)

Company

Employes

Projects

image16.png
Functional
Dependency

Trivial
Functional
Dependency

Non-trivial
Functional
Dependency

image1.png
name

student

address

image2.png
ER Model

Entity

Weak Entity

Attribute

[— Key Attribute

(— Composite Attribute

— Multivalued Attribute

{— Derived Attribute

Relation

Onetoone

Oneto many

Many to one

Many to many

image3.png
Employee

works
Jor,

Department

image4.png
Loan

Installment

