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UNIT IV: PROGRAMMING MODEL

Open source grid middleware packages – Globus Toolkit (GT4) Architecture , Configuration – 
Usage of Globus – Main components and Programming model - Introduction to Hadoop 
Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output 
parameters, configuring and running a job – Design of Hadoop file system, HDFS concepts, 
command line and java interface, dataflow of File read & File write. 

Open Source Grid Middleware Packages

 The  Open  Grid  Forum and  Object  Management  are  two  well-  formed  organizations
behind the standards

 Middleware  is  the  software  layer  that  connects  software components.  It  lies  between
operating system and the applications.

 Grid middleware is specially designed a layer between hardware and software, enable the
sharing of heterogeneous resources and managing virtual organizations created around
the grid.   

 The popular grid middleware are
1. BOINC -Berkeley Open Infrastructure for Network Computing.
2. UNICORE - Middleware developed by the German grid computing community.
3. Globus  (GT4)  -  A middleware  library  jointly  developed  by Argonne National
Lab., Univ. of Chicago, and USC Information Science Institute, funded by DARPA,
NSF, and NIH.
4. CGSP in ChinaGrid - The CGSP (ChinaGrid Support Platform) is a middleware
library developed by 20 top universities in China as part of the ChinaGrid Project
5. Condor-G - Originally developed at the Univ. of Wisconsin for general distributed
computing, and later extended to Condor-G for grid job management.
6. Sun  Grid  Engine  (SGE)  -  Developed  by  Sun  Microsystems  for  business  grid
applications.  Applied  to  private  grids  and  local  clusters  within  enterprises  or
campuses.
7. gLight -Born from the collaborative efforts of more than 80 people in 12 different
academic and industrial research centers as part of the EGEE Project, gLite provided
a  framework  for  building  grid  applications  tapping  into  the  power  of  distributed
computing and storage resources across the Internet. 

Globus Toolkit Architecture (GT4)

 The Globus Toolkit, is an open middleware library for the grid computing communities.

These  open  source  software  libraries  support  many  operational  grids  and  their

applications on an international basis. 

 The toolkit addresses common problems and issues related to grid resource discovery,

management, communication, security, fault detection, and portability. The software itself

provides a variety of components and capabilities. 

 The library includes a rich set of service implementations.  The implemented software

supports grid infrastructure management, provides tools for building new web services in

Java , C, and Python, builds a powerful standard-based security infrastructure and client
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API s (in  different  languages),  and offers comprehensive  command-line programs for

accessing various grid services. 

  Security  infrastructure  and  client  APIs  (in  different  languages),  and  offers

comprehensive command-line programs for accessing various grid services.

 The Globus Toolkit was initially motivated by a desire to remove obstacles that prevent

seamless  collaboration,  and  thus  sharing  of  resources  and  services,  in  scientific  and

engineering applications. The shared resources can be computers, storage, data, services,

networks, science instruments (e.g., sensors), and so on. The Globus library version GT4,

is conceptually shown in Figure 

            

Figure: Globus Toolkit GT4 supports distributed and cluster computing services

The GT4 Library     
  GT4 offers the middle-level core services in grid applications. 
 The high-level services and tools, such as MPI , Condor-G, and Nirod/G, are developed

by third parties for general purpose distributed computing applications. 
 The local services, such as LSF, TCP, Linux, and Condor, are at the boom level and are

fundamental tools supplied by other developers.
 As a  de  facto  standard  in  grid  middleware,  GT4 is  based  on  industry-standard  web

service technologies.

Functionalities of GT4

 Global  Resource  Allocation  Manager   (GRAM  )  -  Grid  Resource  Access  and
Management (HTTP-based)

2

Downloaded by Viveka M. (pc.cit@drsnsrcas.ac.in)

lOMoARcPSD|18128780



 Communication (Nexus ) - Unicast and multicast communication
 Grid Security Infrastructure (GSI ) - Authentication and related security services
 Monitory  and Discovery Service  (MDS )  -  Distributed  access  to  structure  and state

information
 Health and Status (HBM ) - Heartbeat monitoring of system components
 Global Access of Secondary Storage (GASS ) - Grid access of data in remote secondary

storage
 Grid File Transfer (GridFTP ) Inter-node fast file transfer

Globus Job Workflow

 A typical job execution sequence proceeds as follows: The user delegates his credentials 
to a delegation service. 

 The user submits a job request to GRAM with the delegation identifier as a parameter.
  GRAM parses the request, retrieves the user proxy certificate from the delegation 

service, and then acts on behalf of the user. 
 GRAM sends a transfer request to the RFT (Reliable File Transfer), which applies 

GridFTP to bring in the necessary files.
 GRAM invokes a local  scheduler via a GRAM adapter and the SEG (Scheduler Event
 Generator) initiates a set of user j obs. 
 The local scheduler reports the j ob state to the SEG. Once the j ob is complete, GRAM 

uses RFT and GridFTP to stage out the resultant files. The grid monitors the progress of 
these operations and sends the user a notification

Figure: Globus job workflow among interactive functional modules.

Client-Globus Interactions

 There  are  strong interactions  between  provider  programs and user  code.  GT4 makes
heavy  use  of  industry-standard  web  service  protocols  and  mechanisms  in  service
Description, discovery, access, authentication, authorization, and the like. 

 GT4 makes extensive use of Java, C, and Python to write user code. 
 Web service  mechanisms define  specific  interfaces  for  grid  computing.  Web services

provide flexible, extensible, and widely adopted XML-based interfaces.
 These  demand  computational,  communication,  data,  and  storage  resources.  We  must

enable  a  range  of  end-user  tools  that  provide  the  higher-level  capabilities  needed  in
3
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specific user applications. Developers can use these services and libraries to build simple
and complex systems quickly.

Figure: Client and GT4 server interactions; vertical boxes correspond to service programs

and horizontal boxes represent the user codes.

            The horizontal boxes in the client domain denote custom applications and/or third-party
tools  that  access  GT4  services.  The  toolkit  programs  provide  a  set  of  useful  infrastructure
services.
            Three containers are used to host user-developed services written in Java, Python, and C,
respectively. These containers provide implementations of security, management, discovery, state
management, and other mechanisms frequently required when building services.
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Data Management Using GT4

 Grid applications one need to provide access to and/or integrate large quantities of data at 
multiple sites. The GT4 tools can be used individually or in conj unction with other tools to 
develop interesting solutions to efficient data access. The following list briefly introduces 
these GT4 tools:

1. Grid FTP supports reliable, secure, and fast memory-to-memory and disk-to-disk data 
movement over high-bandwidth WANs. Based on the popular FTP protocol for internet 
file transfer, Grid FTP adds additional features such as parallel data transfer, third-party 
data transfer, and striped data transfer. I n addition, Grid FTP benefits from using the 
strong Globus Security Infra structure for securing data channels with authentication and 
reusability. It has been reported that the grid has achieved 27 Gbit/second end-to-end 
transfer speeds over some WANs.
2. RFT provides reliable management of multiple Grid FTP transfers. I t has been used to 
orchestrate the transfer of millions of files among many sites simultaneously.
3. RLS (Replica Location Service) is a scalable system for maintaining and providing 
access to information about the location of replicated files and data sets.
4. OGSA-DAI (Globus Data Access and Integration) tools were developed by the UK 
eScience program and provide access to relational and XML databases. 

MapReduce Model 
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MapReduce is a programming model and an associated implementation for 

processing and generating large data sets with a parallel, distributed algorithm on a cluster

           
 The model is based on two distinct steps for an application:
            • Map: An initial ingestion and transformation step, in which individual input records can
be processed in parallel.
            • Reduce: An aggregation or summarization step, in which all associated records must be
processed together by a single entity.
            The core concept of MapReduce in Hadoop is that input may be split into logical chunks,

and each chunk may be initially processed independently, by a map task. The results of these

individual  processing chunks can be  physically  partitioned  into distinct  sets,  which  are then

sorted. Each sorted chunk is passed to a reduce task.

            A map task may run on any compute node in the cluster, and multiple map tasks may be

running in parallel  across the cluster. The map task is responsible for transforming the input

records into key/value pairs. The output of all of the maps will be partitioned, and each partition

will be sorted. There will be one partition for each reduce task. Each partition’s sorted keys and

the values associated with the keys are then processed by the reduce task. There may be multiple

reduce tasks running in parallel on the cluster.

Formal Definition of MapReduce 

The MapReduce software framework provides an abstraction layer with the data flow and

flow of  control  to  users,  and hides  the  implementation  of  all  data  flow steps  such as  data

partitioning, mapping, synchronization, communication, and scheduling. Here, although the data

flow in such frameworks is predefined, the abstraction layer provides two well-defined interfaces

in the form of two functions: Map and Reduce .
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These two main functions can be overridden by the user to achieve specific objectives.

Figure 6.1 shows the MapReduce framework with data flow and control flow. Therefore, the user

overrides the Map and Reduce functions first and then invokes the provided MapReduce (Spec,

& Results) function from the library to start the flow of data. 

The MapReduce function, MapReduce (Spec, & Results), takes an important parameter

which is a specification object, the Spec. This object is first initialized inside the user’s program,

and then the user writes code to fill it with the names of input and output files, as well as other

optional  tuning parameters.  This object is  also filled with the name of the Map and Reduce

functions to identify these user- defined functions to the MapReduce library. 

The overall  structure of a user’s program containing the Map, Reduce,  and the Main

functions is given below. The Map and Reduce are two major subroutines. They will be called to

implement the desired function performed in the main program.

Formal Notation of MapReduce Data Flow

The Map function is applied in parallel to every input (key, value) pair, and produces new

set of intermediate (key, value) pairs  as follows:

Then the MapReduce library collects  all  the produced intermediate  (key, value) pairs

from all input (key, value) pairs, and sorts them based on the “key” part. It then groups the values

of all occurrences of the same key. Finally, the Reduce function is applied in parallel to each

group producing the collection of values as output as illustrated here:
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MapReduce Logical Data Flow 

The input data to both the Map and the Reduce functions has a particular structure. This

also pertains for the output data. The input data to the Map function is in the form of a (key,

value) pair. For exam- ple, the key is the line offset within the input file and the value is the

content of the line. The output data from the Map function is structured as (key, value) pairs

called intermediate (key, value) pairs. In other words, the user-defined Map function processes

each input (key, value) pair and produces a number of (zero, one, or more) intermediate (key,

value)  pairs. Here,  the goal is  to process all  input (key, value)  pairs  to the Map function in

parallel. In turn, the Reduce function receives the intermediate (key, value) pairs in the form of a

group of intermediate values associated with one intermediate key, (key, [set of values]). 

MapReduce framework forms these groups by first sorting the intermediate (key, value)

pairs and then grouping values with the same key. It should be noted that the data is sorted to

simplify the grouping process. The Reduce function processes each (key, [set of values]) group

and produces a set of (key, value) pairs as output.

 To clarify the data flow in a sample MapReduce application,  one of the well-known

MapReduce problems, namely word count, to count the number of occurrences of each word in a

collection of documents is presented here. Figure 6.3 demonstrates the data flow of the word-

count problem for a simple input file containing only two lines as follows: (1) “most people

ignore most poetry” and (2) “most poetry ignores most people.” In this case, the Map function

simultaneously produces a number of intermediate (key, value) pairs for each line of content so

that each word is the inter-mediate key with 1 as its intermediate value; for example, (ignore, 1).

Then the MapReduce library collects all the generated intermediate (key, value) pairs and sorts

them to group the 1’s for identical words; for example, (people, [1,1]). Groups are then sent to

the Reduce function in parallel so that it can sum up the 1 values for each word and generate the

actual number of occurrence for each word in the file; for example, (people, 2).
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MapReduce Actual Data and Control Flow 

The main responsibility of the MapReduce framework is to efficiently run a user’s program on a
distributed computing system. Therefore, the MapReduce framework meticulously handles all parti-
tioning, mapping, synchronization, communication, and scheduling details of such data flows . We
summarize this in the following distinct steps:     

1. Data partitioning 
The MapReduce library splits the input data (files), already stored in GFS, into M pieces

that also correspond to the number of map tasks.
2. Computation partitioning 

This is implicitly handled (in the MapReduce framework) by obliging users to write their
programs in the form of the Map and Reduce functions. Therefore, the MapReduce library only
generates copies of a user program (e.g.,  by a fork system call)  containing the Map and the
Reduce functions, distributes them, and starts them up on a number of available computation
engines. 
3. Determining the master and workers 

The MapReduce architecture is based on a master- worker model. Therefore, one of the
copies of the user program becomes the master and the rest become workers. The master picks
idle workers, and assigns the map and reduce tasks to them. A map/reduce worker is typically a

9

Downloaded by Viveka M. (pc.cit@drsnsrcas.ac.in)

lOMoARcPSD|18128780

https://www.studocu.com/in?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=unit-4


computation engine such as a cluster node to run map/ reduce tasks by executing Map/Reduce
functions. Steps 4–7 describe the map workers.
 4. Reading the input data (data distribution)

 Each map worker reads its corresponding portion of the input data, namely the input data
split,  and sends it to its Map function. Although a map worker may run more than one Map
function, which means it has been assigned more than one input data split, each worker is usually
assigned one input split only. 
5. Map function 

Each Map function receives the input data split as a set of (key, value) pairs to process
and produce the intermediated (key, value) pairs. 
6. Combiner function 

This is an optional local function within the map worker which applies to intermediate
(key, value)  pairs. The user can invoke the Combiner function inside the user program. The
Combiner  function  runs  the  same  code  written  by  users  for  the  Reduce  function  as  its
functionality is identical to it. The Combiner function merges the local data of each map worker
before sending it over the network to effectively reduce its communication costs. As mentioned
in our discussion of logical  data flow, the MapReduce framework sorts  and groups the data
before it is processed by the Reduce function. Similarly, the MapReduce framework will also
sort and group the local data on each map worker if the user invokes the Combiner function. 

7. Partitioning function

 As mentioned in our discussion of the MapReduce data flow, the intermediate  (key,
value) pairs with identical keys are grouped together because all values inside each group should
be  processed  by  only  one  Reduce  function  to  generate  the  final  result.  However,  in  real
implementations, since there are M map and R reduce tasks, intermediate (key, value) pairs with
the same key might be produced by different map tasks, although they should be grouped and
processed together by one Reduce function only. Therefore, the intermediate (key, value) pairs
produced by each map worker are partitioned into R regions, equal to the number of reduce
tasks, by the Partitioning function to guarantee that all (key, value) pairs with identical keys are
stored in the same region. As a result, since reduce worker i reads the data of region i of all map
workers, all (key, value) pairs with the same key will be gathered by reduce worker i accordingly
(see Figure 6.4). To implement this technique, a Partitioning function could simply be a hash
function (e.g., Hash(key) mod R) that forwards the data into particular regions. It is also worth
noting that the locations of the buffered data in these R partitions are sent to the master for later
forwarding of data to the reduce workers. Figure 6.5 shows the data flow implementation of all
data flow steps. The following are two networking steps: 
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8. Synchronization 
MapReduce applies  a  simple  synchronization  policy  to  coordinate  map workers  with

reduce workers, in which the communication between them starts when all map tasks finish
9. Communication 

Reduce worker i, already notified of the location of region i of all map workers, uses a
remote procedure call to read the data from the respective region of all map workers. Since all
reduce workers read the data from all map workers, all-to-all communication among all map and
reduce workers, which incurs network congestion, occurs in the network. This issue is one of the
major bottlenecks in increasing the performance of such systems. A data transfer module was
proposed to schedule data transfers independently.  Steps 10 and 11 correspond to the reduce
worker domain: 
10. Sorting and Grouping 

When the process of reading the input data is finalized by a reduce worker, the data is
initially  buffered  in  the  local  disk  of  the  reduce  worker.  Then  the  reduce  worker  groups
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intermediate (key, value) pairs by sorting the data based on their keys, followed by grouping all
occurrences  of identical  keys.  Note that  the buffered data is  sorted and grouped because the
number of unique keys produced by a map worker may be more than R regions in which more
than one key exists in each region of a map worker (see Figure 6.4). 
11. Reduce function 

The reduce worker iterates over the grouped (key, value) pairs, and for each unique key, it
sends the key and corresponding values to the Reduce function. Then this function processes its
input data and stores the output results in predetermined files in the user’s program

Introducing Hadoop

            Hadoop  is  the  Apache  Software  Foundation  top-level  project  that  holds  the  various
Hadoop subprojects that graduated from the Apache Incubator. The Hadoop project provides and
supports  the  development  of  open  source  software  that  supplies  a  framework  for  the
development  of  highly  scalable  distributed  computing  applications.  The  Hadoop  framework
handles the processing details, leaving developers free to focus on application logic.

How Hadoop Works:

•    Data is split into small blocks of 64 or 128MB and stored onto a minimum of 3
       machines at a time to ensure data availability & reliability
•    Many machines are connected in a cluster work in parallel for faster crunching of data
•    If any one machine fails, the work is assigned to another automatically
•    MapReduce breaks complex tasks into smaller chunks to be executed in parallel
•    Hive – SQL like interface
•    Pig – data management language, like commercial tools AbInitio, Informatica,
•    Hbase – column oriented database on top of HDFS
•    Flume – real time data streaming such as credit card transaction, videos
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•    Sqoop – SQL interface to RDBMS and HDFS
•    Zookeeper – a DBA management for Hadoop

a. Hadoop Distributed File System

HDFS is the primary storage system of Hadoop. Hadoop distributed file system (HDFS) is java 
based file system that provides scalable, fault tolerance, reliable and cost efficient data storage 
for big data. HDFS is a distributed filesystem that runson commodity hardware. HDFS is already
configured with default configuration for many installations. Most of the time for large clusters 
configuration is needed. Hadoop interact directly with HDFS by shell-like commands.

 Components of HDFS:

i. NameNode

It is also known as Master node. NameNode does not store actual data or dataset. NameNode 
stores Metadata i.e. number of blocks, their location, on which Rack, which Datanode the data is 
stored and other details. It consists of files and directories.

Tasks of NameNode

 Manage file system namespace.

 Regulates client’s access to files.

 Executes file system execution such as naming, closing, opening files and directories.

ii. DataNode

It is also known as Slave. HDFS Datanode is responsible for storing actual data in HDFS. 
Datanode performs read and write operation as per the request of the clients. Replica block of 
Datanode consists of 2 files on the file system. The first file is for data and second file is for 
recording the block’s metadata. HDFS Metadata includes checksums for data. At startup, each 
Datanode connects to its corresponding Namenode and does handshaking. Verification of 
namespace ID and software version of DataNode take place by handshaking. At the time of 
mismatch found, DataNode goes down automatically.

Tasks of DataNode

 DataNode performs operations like block replica creation, deletion and replication 

according to the instruction of NameNode.

 DataNode manages data storage of the system.

b. MapReduce

Hadoop MapReduce is the core component of hadoop which provides data processing. 
MapReduce is a software framework for easily writing applications that process the vast amount 
of structured and unstructured data stored in the Hadoop Distributed File system.
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Hadoop MapReduce programs are parallel in nature, thus are very useful for performing large-
scale data analysis using multiple machines in the cluster. By this parallel processing, speed and 
reliability of cluster is improved.

Working of MapReduce

MapReduce works by breaking the processing into two phases:

 Map phase

 Reduce phase

Each phase has key-value pairs as input and output. In addition, programmer also specifies two 
functions: map function andreduce function

Map function takes a set of data and converts it into another set of data, where individual 
elements are broken down into tuples (key/value pairs).

Reduce function takes the output from the Map as an input and combines those data tuples 
based on the key and accordingly modifies the value of the key.

Features of MapReduce

i. Simplicity

MapReduce jobs are easy to run. Applications can be written in any language such as java, C++, 
and python.

ii. Scalability

MapReduce can process petabytes of data.

iii. Speed

By means of parallel processing problems that take days to solve, it is solved in hours and 
minutes by MapReduce.

iv. Fault tolerance

MapReduce takes care of failures. If one copy of data is unavailable, another machine has a copy
of the same key pair which can be used for solving the same subtask.

c. YARN

YARN provides the resource management. YARN is called as the operating system of hadoop as 
it is responsible for managing and monitoring workloads. It allows multiple data processing 
engines such as real-time streaming and batch processing to handle data stored on a single 
platform.

YARN has been projected as a data operating system for Hadoop2. Main features of YARN are:

 Flexibility: Enables other purpose-built data processing models beyond MapReduce 

(batch), such as interactive and streaming. Due to this feature of YARN, other applications 

can also be run along with Map Reduce programs in hadoop2.
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 Efficiency – As many applications can be run on same cluster, efficiency of Hadoop 

increases without much effect on quality of service.

 Shared – Provides a stable, reliable, secure foundation and shared operational services 

across multiple workloads. Additional programming models such as graph processing and 

iterative modeling are now possible for data processing.

Refer YARN     Comprehensive Guide     for more details.

d. Hive

Hive is an open source data warehouse system for querying and analyzing large datasets stored in
hadoop files. Hive do three main functions: data summarization, query, and analysis.

Hive use language called HiveQL (HQL), which is similar to SQL. HiveQL automatically 
translates SQL-like queries into MapReduce jobs which will execute on hadoop.

Main parts of Hive are:

 Metastore: metadata is stored in

 Driver: manage the lifecycle of a HiveQL statement.

 Query complier: compiles HiveQL into directed acyclic graph.

 Hive server: provide a thrift interface and JDBC/ODBC server.

Refer Hive     Comprehensive Guide     for more details.

e. Pig

Pig is a high- level language platform for analyzing and querying huge dataset that are stored in 
HDFS. Language used in Pig is called PigLatin. It is very similar to SQL. It is used to load the 
data, apply the required filters and dump the data in the required format. For Programs execution,
pig requires Java runtime environment.

Features of Apache Pig:

 Extensibility: For carrying out special purpose processing, users are allowed to create 

their own function.

 Optimization opportunities: Pig allows the system to optimize automatic execution. 

This allows the user to pay attention to semantics instead of efficiency.

 Handles all kinds of data: Pig analyzes both structured as well as unstructured.

f. Hbase
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It is distributed database that was designed to store structured data in tables that could have 
billions of row and millions of columns. Hbase is scalable, distributed, and Nosql database that is
built on top of HDFS. Hbase provide real time access to read or write data in HDFS.

Components of Hbase

i. Hbase master

It is not part of the actual data storage but negotiates load balancing across all RegionServer.

 Maintain and monitor the hadoop cluster.

 Performs administration (interface for creating, updating and deleting tables.)

 Controls the failover.

 HMaster handles DDL operation.

ii. RegionServer

It is the worker node which handle read, write, update and delete requests from clients. Region 
server process runs on every node in hadoop cluster. Region server runs on HDFS DateNode.

g. HCatalog

HCatalog is a table and storage management layer for hadoop. HCatalog supports different 
components available in hadoop like MapReduce, hive and pig to easily read and write data from
the cluster. HCatalog is a key component of Hive that enables the user to store their data in any 
format and structure.

By default, HCatalog supports RCFile, CSV, JSON, sequenceFile and ORC file formats.

Benefits of HCatalog:

 Enables notifications of data availability.

 With the table abstraction, HCatalog frees the user from overhead of data storage.

 Provide visibility for data cleaning and archiving tools.

h. Avro

Avro is a most popular Data serialization system. Avro is an open source project that provides 
data serialization and data exchange services for hadoop. These services can be used together or 
independently. Big data can exchange programs written in different languages using Avro.

Using serialization service programs can serialize data into files or messages. Avro stores data 
definition and data together in one message or file making it easy for programs to dynamically 
understand information stored in Avro file or message.

Avro schema: Avro relies on schemas for serialization/deserialization. Avro requires schema 
when data is written or read. When Avro data is stored in a file its schema is stored with it, so 
that files may be processed later by any program.
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Dynamic typing: It refers to serialization and deserialization without code generation. It 
complements the code generation which is available in Avro for statically typed language as an 
optional optimization.

Avro provides:

 Rich data structures.

 Remote procedure call.

 Compact, fast, binary data format.

 Container file, to store persistent data.

i. Thrift

It is a software framework for scalable cross-language services development. Thrift is an 
interface definition language used for RPC communication. Hadoop does a lot of RPC calls so 
there is a possibility of using Apache Thrift for performance or other reasons.

j. Apache Drill

The main purpose of the drill is large-scale data processing including structured and semi-
structured data. It is a low latency distributed query engine that is designed to scale to several 
thousands of nodes and query petabytes of data. The drill is the first distributed SQL query 
engine that has a schema-free model.

Application of Apache drill

The drill has become an invaluable tool at cardlytics, a company that provides consumer 
purchase data for mobile and internet banking. Cardlytics is using a drill to quickly process 
trillions of record and execute queries.

Features of Apache Drill:

The drill has specialized memory management system to eliminates garbage collection and 
optimize memory allocation and usage. Drill plays well with Hive by allowing developers to 
reuse their existing Hive deployment.

 Extensibility: Drill provides an extensible architecture at all layers, including query 

layer, query optimization, and client API. We can extend any layer for the specific need of an

organization.

 Flexibility: Drill provides a hierarchical columnar data model that can represent 

complex, highly dynamic data and allow efficient processing.

 Dynamic schema discovery: Apache drill does not require schema or type specification 

for data in order to start the query execution process. Instead, drill starts processing the data 

in units called record batches and discover schema on the fly during processing.
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 Drill decentralized metadata: unlike other SQL Hadoop technologies, the drill does not 

have centralized metadata requirement. Drill users do not need to create and manage tables 

in metadata in order to query data.

k. Apache Mahout

Mahout is open source framework that is primarily used for creating scalable machine learning 
algorithm and data mining library. Once data is stored in Hadoop HDFS, mahout provides the 
data science tools to automatically find meaningful patterns in those big data sets.

Algorithms of Mahout are:

 Clustering: Here it takes the item in particular class and organizes them into naturally 

occurring groups, such that item belonging to the same group are similar to each other.

 Collaborative filtering: It mines user behavior and makes product recommendations 

(e.g. amazon recommendations)

 Classifications: It learns from existing categorization and then assigns unclassified items 

to the best category.

 Frequent pattern mining: It analyzes items in a group (e.g. items in a shopping cart or 

terms in query session) and then identifies which items typically appear together.

l. Apache Sqoop

Sqoop is used for importing data from external sources into related hadoop components like 
HDFS, Hbase or Hive. It is also used for exporting data from hadoop to other external sources. 
Sqoop works with relational databases such as teradata, Netezza, oracle, MySQL.

Features of Apache Sqoop:

 Import sequential datasets from mainframe: Sqoop satisfies the growing need to move

data from the mainframe to HDFS.

 Import direct to ORC files: Improves compression and light weight indexing and 

improve query performance.

 Parallel data transfer: For faster performance and optimal system utilization.

 Efficient data analysis: Improve efficiency of data analysis by combining structured 

data and unstructured data on a schema on reading data lake.

 Fast data copies: from an external system into hadoop.

m. Apache Flume
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Flume is used for efficiently collecting, aggregating and moving a large amount of data from its 
origin and sending it back to HDFS. Flume is fault tolerant and reliable mechanism. Flume was 
created to allow flow data from the source into Hadoop environment. It uses a simple extensible 
data model that allows for the online analytic application. Using Flume, we can get the data from
multiple servers immediately into hadoop.

n. Ambari

Ambari is a management platform for provisioning, managing, monitoring and securing 
apache Hadoop cluster. Hadoop management gets simpler as Ambari provide consistent, secure 
platform for operational control.

Features of Ambari:

 Simplified installation, configuration, and management: Ambari easily and efficiently

create and manage clusters at scale.

 Centralized security setup: Ambari reduce the complexity to administer and configure 

cluster security across the entire platform.

 Highly extensible and customizable: Ambari is highly extensible for bringing custom 

services under management.

 Full visibility into cluster health: Ambari ensures that the cluster is healthy and 

available with a holistic approach to monitoring.

o. Zookeeper

Apache Zookeeper is a centralized service for maintaining configuration information, naming, 
providing distributed synchronization, and providing group services. Zookeeper is used to 
manage and coordinate a large cluster of machines.

Features  of zookeeper:

 Fast: zookeeper is fast with workloads where reads to data are more common than writes.

The ideal read/write ratio is 10:1.

 Ordered: zookeeper maintains a record of all transactions, which can be used for high-

level

p. Oozie

It is a workflow scheduler system for managing apache hadoop jobs. Oozie combines multiple 
jobs sequentially into one logical unit of work. Oozie framework is fully integrated with apache 
hadoop stack, YARN as an architecture center and supports hadoop jobs for apache MapReduce, 
pig, Hive, and Sqoop.
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In Oozie, users are permitted to create Directed Acyclic Graph of workflow, which can run in 
parallel and sequentially in hadoop. Oozie is scalable and can manage timely execution of 
thousands of workflow in a hadoop cluster. Oozie is very much flexible as well. One can easily 
start, stop, suspend and rerun jobs. It is even possible to skip a specific failed node or rerun it in 
Oozie.

There are two basic types of Oozie jobs:

 Oozie workflow: It is to store and run workflows composed of hadoop jobs e.g., 

MapReduce, pig, Hive.

 Oozie coordinator: It runs workflow jobs based on predefined schedules and availability

of data.

Map & Reduce function

A Simple Map Function: IdentityMapper
The Hadoop framework provides a very simple map function, called IdentityMapper. It is used in
jobs that only need to reduce the input, and not transform the raw input. All map functions must
implement the Mapper interface, which guarantees that the map function will always be called
with a key. The key is an instance of a WritableComparable object, a value that is an instance of
a Writable object, an output object, and a reporter.

IdentityMapper.java
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package org.apache.hadoop.mapred.lib;
import java.io.IOException;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.MapReduceBase;
/** Implements the identity function, mapping inputs directly to outputs. */
public class IdentityMapper<K, V>
extends MapReduceBase implements Mapper<K, V, K, V> {
/** The identify function. Input key/value pair is written directly to
* output.*/
public void map(K key, V val,

OutputCollector<K, V> output, Reporter reporter)

throws IOException {

output.collect(key, val);

}

}
A Simple Reduce Function: IdentityReducer
The Hadoop framework calls the reduce function one time for each unique key. The framework
provides the key and the set of values that share that key.

IdentityReducer.java

package org.apache.hadoop.mapred.lib;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.MapReduceBase;
/** Performs no reduction, writing all input values directly to the output. */
public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {
■ THE BASICS OF A MAPREDUCE JOB 
/** Writes all keys and values directly to output. */

public void reduce(K key, Iterator<V> values,

OutputCollector<K, V> output, Reporter reporter)

throws IOException {

while (values.hasNext()) {

output.collect(key, values.next());

}

}

If you require the output of your job to be sorted, the reducer function must pass the key objects
to  the  output.collect()  method unchanged.  The reduce phase is,  however,  free to  output  any
number of records, including zero records, with the same key and different values.

HDFS Concepts

Blocks

            A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystem blocks are typically a few kilobytes in size, while disk blocks are normally 512 bytes.
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HDFShas the concept of a block, but it is a much larger unit—64 MB by default.File0sin HDFS
are broken into block-sized chunks, which are stored as independent units. Unlike a filesystem
for a single disk, a file in HDFS that is smaller than a single block does not occupy a full block’s
worth of underlying storage.
Simplicity  is  something  to  strive  for  all  in  all  systems,  but  is  especially  important  for  a
distributed system in which the failure modes are so varied. The storage subsystem deals with
blocks, simplifying storage management and eliminating metadata concerns
Namenodes and Datanodes

            An  HDFS  cluster  has  two  types  of  node  operating  in  a  master-worker  pattern:
a namenode (the  master)  and  a  number  of datanodes (workers).  The  namenode  manages  the
filesystem namespace.  It  maintains  the filesystem tree and the metadata  for all  the files  and
directories in the tree.
            The namenode also knows the datanodes on which all the blocks for a given file are
located,  however,  it  does  not  store  block  locations  persistently,  since  this  information  is
reconstructed from datanodes when the system starts.
            A client accesses  the  filesystem  on  behalf  of  the  user  by  communicating  with  the
namenode  and  datanodes.  Datanodes  are  the  workhorses  of  the  filesystem.  Hadoop  can  be
configured so that the namenode writes its persistent state to multiple filesystems. These writes
are synchronous and atomic. The usual configuration choice is to write to local disk as well as a
remote NFS mount.
            It is also possible to run a secondary namenode, which despite its name does not act as a
namenode.  Its  main  role  is  to  periodically  merge the namespace  image with the  edit  log to
prevent  the  edit  log  from becoming  too  large.  The  secondary  namenode  usually  runs  on  a
separate  physical  machine,  since  it  requires  plenty  of  CPU  and  as  much  memory  as  the
namenode to perform the merge. It keeps a copy of the merged namespace image, which can be
used in the event of the namenode failing.
HDFS Federation

            The namenode keeps a reference to every file and block in the filesystem in memory,
which means that on very large clusters with many files, memory becomes the limiting factor for
scaling.
HDFS Federation,  introduced in the 0.23 release  series,  allows a  cluster  to  scale  by adding
namenodes, each of which manages a portion of the filesystem namespace. For example, one
namenode might manage all the files rooted under /user, say, and a second
Namenode  might  handle  files  under /share.Under  federation,  each  namenode  manages
a namespace  volume,  which  is  made  up  of  the  metadata  for  the  namespace,  and  a block

pool containing  all  the  blocks  for  the  files  in  the  namespace.  Namespace  volumes  are
independent of each other, which means namenodes do not communicate with one another, and
furthermore  the  failure  of  one  namenode  does  not  affect  the  availability  of  the  namespaces
managed by other namenodes.
Block pool storage is not partitioned, however, so datanodes register with each namenode in the
cluster and store blocks from multiple block pools.
HDFS High-Availability

The combination of replicating namenode metadata on multiple filesystems, and using
the secondary namenode to create checkpoints protects against data loss, but does not provide
high-availability of the filesystem. The namenode is still asingle point of failure (SPOF), since if
it did fail, all clients—including MapReduce jobs—would be unable to read, write, or list files,
because the namenode is the sole repository of the metadata and the file-to-block mapping. In
such  an  event  the  whole  Hadoop  system  would  effectively  be  out  of  service  until  a  new
namenode  could  be  brought  online.  In  the  event  of  the  failure  of  the  active  namenode,  the
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standby  takes  over  its  duties  to  continue  servicing  client  requests  without  a  significant
interruption.
A few architectural changes are needed to allow this to happen:
            • The namenodes must use highly-available shared storage to share the edit log.
When a standby namenode comes up it reads up to the end of the shared edit log to synchronize
its state with the active namenode, and then continues to read new entries as they are written by
the active namenode.
            • Datanodes must send block reports to both namenodes since the block mappings are
stored in a namenode’s memory, and not on disk.
            • Clients must be configured to handle namenode failover, which uses a mechanism that
is transparent to users.
If the active namenode fails, then the standby can take over very quickly since it has the latest
state available in memory: both the latest edit log entries, and an up-to-date block mapping. The
actual observed failover time will be longer in practice (around a minute or so), since the system
needs to be conservative in deciding that the active namenode has failed.

Failover and fencing

            The transition from the active namenode to the standby is managed by a new entity in the
system  called  the failover  controller.  Failover  controllers  are  pluggable,  but  the  first
implementation uses ZooKeeper to ensure that only one namenode is active. Each namenode
runs a lightweight failover controller process whose job it is to monitor its namenode for failures
and trigger a failover should a namenode fail.
            Failover  may  also  be  initiated  manually  by  an  administrator,  in  the  case  of  routine
maintenance, for example.
            In the case of an ungraceful failover, however, it is impossible to be sure that the failed
namenode has stopped running. The HA implementation goes to great lengths to ensure that the
previously active namenode is  prevented from doing any damage and causing corruption—a
method known as fencing. The system employs a range of fencing mechanisms, including killing
the namenode’s process, revoking its access to the shared storage directory,  and disabling its
network  port  via  a  remote  management  command.  As  a  last  resort,  the  previously  active
namenode can be fenced with a technique rather graphically known as STONITH, or “shoot the
other node in the head”, which uses a specialized power distribution unit to forcibly power down
the host machine.  Client  failover  is  handled transparently by the client  library.  The simplest
implementation uses client-side configuration to control failover. The HDFS URI uses a logical
hostname which is mapped to a pair of namenode addresses, and the client library tries each
namenode address until the operation succeeds.

Anatomy of a File Read

            The client opens the file it wishes to read by calling open () on theFileSystem object,
which  for  HDFS  is  an  instance  of DistributedFileSystem.DistributedFileSystem calls  the
namenode, using RPC, to determine the locations of the blocks for the first few blocks in the file.
The namenode returns the addresses of the datanodes that have a copy of that block.
            If the client is itself a datanode ,then it will read from the local datanode, if it hosts a copy
of the block .The DistributedFileSystem returns  an FSDataInputStream   to  the client  for it  to
read  data  from.FSDataInputStream in  turn  wraps  a DFSInputStream,  which  manages  the
datanode and namenode I/O.
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Figure: A client reading data from HDFS

            The  client  then  calls read  () on  the  stream. DFSInputStream,  which  has  stored  the
datanode addresses for the first few blocks in the file, then connects to the first (closest) datanode
for the first  block in the file.  Data is  streamed from the datanode back to the client,  which
calls read  () repeatedly  on  the  stream.  When  the  end  of  the  block  is
reached, DFSInputStream will close the connection to the datanode, then find the best datanode
for the next block. This happens transparently to the client, which from its point of view is just
reading a continuous stream.
            Blocks are read in order with the DFSInputStream opening new connections to datanodes
as the client reads through the stream. It will also call the namenode to retrieve the datanode
locations  for  the  next  batch  of  blocks  as  needed.  When  the  client  has  finished  reading,  it
calls close () on theFSDataInputStream .

Figure: Network distance in Hadoop

            During reading, if the DFSInputStream encounters an error while communicating with a
datanode, then it will try the next closest one for that block. It will also remember datanodes that
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have failed so that it doesn’t needlessly retry them for later blocks. The DFSInputStream also
verifies checksums for the data transferred to it from the datanode.
If a corrupted block is found, it is reported to the namenode before theDFSInput Stream attempts
to read a replica of the block from another datanode.One important aspect of this design is that
the client contacts datanodes directly to retrieve data and is guided by the namenode to the best
datanode for each block. This design allows HDFS to scale to a large number of concurrent
clients, since the data traffic is spread across all the datanodes in the cluster.

Anatomy of a File write

            The  client  creates  the  file  by  calling create
() onDistributedFileSystem. DistributedFileSystem makes an RPC call to the namenode to create
a  new  file  in  the  filesystem’s  namespace,  with  no  blocks  associated  with  it  (step  2).  The
namenode performs various checks to make sure the file doesn’t already exist, and that the client
has the right permissions to create the file. If these checks pass, the namenode makes a record of
the new file.

Figure: A client writing data to HDFS

The DistributedFileSystem returns an FSDataOutputStream for the client to start writing data to.
Just  as  in  the  read  case, FSDataOutputStream wraps  aDFSOutput  Stream,  which  handles
communication  with  the  datanodes  and  namenode.As  the  client  writes  data  (step
3), DFSOutputStream splits it into packets, which it writes to an internal queue, called the data

queue. The data queue is consumed by the Data Streamer, whose responsibility it is to ask the
namenode to allocate new blocks by picking a list of suitable datanodes to store the replicas. The
list of datanodes forms a pipeline—we’ll assume the replication level is three, so there are three
nodes in the pipeline. TheDataStreamer streams the packets to the first datanode in the pipeline,
which stores the packet and forwards it to the second datanode in the pipeline. Similarly, the
second datanode stores the packet and forwards it to the third (and last) datanode in the pipeline
(step 4).DFSOutputStream also maintains  an internal  queue of packets that are waiting to be
acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue only
when it has been acknowledged by all the datanodes in the pipeline (step 5).If a datanode fails
while data is being written to it, then the following actions are taken, which are transparent to the
client writing the data.
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Figure: A typical replica pipeline

            First the pipeline is closed, and any packets in the ack queue are added to the front of the
data queue so that datanodes that are downstream from the failed node will not miss any packets.
The current block 0on the good datanodes is given a new identity, which is communicated to the
namenode, so that the partial block on the failed datanode will be deleted if the failed. Datanode
recovers later on. The failed datanode is removed from the pipeline and the remainder of the
block’s data is written to the two good datanodes in the pipeline. The namenode notices that the
block is under-replicated,  and it arranges for a further replica to be created on another node.
Subsequent blocks are then treated as normal. It’s possible, but unlikely, that multiple datanodes
fail  while  a  block  is  being  written.  As  long  asdfs.replication.min replicas  (default  one)  are
written, the write will succeed, and the block will be asynchronously replicated across the cluster
until its target replication factor is reached.
            When the client has finished writing data, it calls close () on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for acknowledgments
before contacting the namenode to signal that the file is complete (step 7). The namenode already
knows which blocks the file is made up.
Command line interface in HDFS:

There are many other interfaces to HDFS, but the command line is one of the simplest, 

and to many developers the most familiar.  We are going to run HDFS on one machine, so first 

follow the instructions for setting up Hadoop in pseudo-distributed mode.Later you’ll see how to 

run on a cluster of machines to give us scalability and fault tolerance. 

Creating single node Hadoop cluster

Installing Java:

>sudo apt-get install default-jdk

create hadoop group and hadoop user (hsuser)

>sudo addgroup hadoop
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>sudo adduser  - -ingroup hadoop hduser

 Add user ad sudoers/admin

>sudo adduser hduser sudo

Install openssh server:

>sudo apt-get install openssh-server

Now logout as admin and login with hduser and generate a key for hduser and add the key to the 

authorized user.

>ssh-keygen -t rsa

this cmd will generate public/private rsa key

>cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

login to local host:

>ssh localhost

>exit

Install Hadoop:

Install hadoop directly or download it from apache.org and install

>wget http://mirrors.sonic.net/apache/hadoop/common/hadoop-2.7.1/hadoop-2.7.1.tar.gz

then extract using

>tar xvzf hadoop-2.7.1.tar.gz

move hadoop.2.7.1 to a directory of our choice  -> /usr/local/hadoop
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>sudo mv hadoop-2.7.1 /usr/local/hadoop

verify the directory location 

Let give the directory to hduser as owner

>sudo chown -R hduser /usr/local

now edit the bashrc file and append to the end of the file; path to hadoop;

>sudo nano ~/.bashrc

In the last line enter the following comments

 export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin

save and quit (cntrlO + cntrlX)

>source ~/.bashrc

Now let give java path to run hadoop

>sudo nano /usr.local/hadoop/etc/hadoop/hadoop-env.sh

edit the following line 

Change the line export JAVA_HOME=${JAVA_HOME} as

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
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Now let configure the following xml files core-site.xml,hdfs-site.xml,yarn-site.xmland 

mapred-site.xml.

>sudo nano /usr/local/hadoop/etc/hadoop/core-site.xml

go to last and add the following tags

<configuration>
<property>

         <name>fs.default.name</name>
         <value>hdfs://localhost:9000</value>
     </property>

</configuration>

>sudo  nano /usr/local/hadoop/etc/hadoop/hdfs-site.xml

go to last and add the following tags

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop_tmp/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.name.dir</name>

<value>file:/usr/local/hadoop_tmp/hdfs/datanode</value>

</property>

</configuration>

>sudo nano /usr/local/hadoop/etc/hadoop/yarn-site.xml

<configuration>
<property>

 <name>yarn.nodemanager.aux-services</name>
   <value>mapreduce_shuffle</value>
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 </property>
 <property>
   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
   <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>

</configuration>

Let copy the mapred.xml template and then edit the file

>cp /usr/local/hadoop/etc/hadoop/mapred-site.xml.template 

/usr/local/hadoop/etc/hadoop/mapred-site.xml

>sudo nano /usr/local/hadoop/etc/hadoop/mapred-site.xml

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

Now let create folders where hadoop will process the hdfs jobs

>sudo mkdir -p /usr/local/hadoop_tmp

>sudo mkdir -p /usr/local/hadoop_tmp/hdfs/namenode

>sudo mkdir -p /usr/local/hadoop_tmp/hdfs/datanode

Assign hduser the ownership of the folder

>sudo chown -R hduser /usr/local/hadoop_tmp

>hdfs namenode -format

>start-dfs.sh

>start-yarn.sh

>jps

Sample output:

12448 NodeManager
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12688 Jps
12088 SecondaryNameNode
11677 NameNode
12189 ResourceManager
11823 DataNode
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