

AIRCRAFT INSTRUMENTS_1

DR. M.ELANGOVAN

PROFESSOR, DEPARTMENT OF AEROSPACE ENGINEERING

SNS COLLEGE OF TECHNOLOGY

Study of "The Atmosphere"

The Structure of the Atmosphere

•The atmosphere is a layered structure, with each layer having distinct properties.

- **Troposphere (0 to 12 km):** The layer closest to Earth's surface, where weather phenomena occur.
- Stratosphere (12 to 50 km): Contains the ozone layer, which protects us from harmful solar radiation.
- **Mesosphere (50 to 85 km):** Where temperatures decrease rapidly with altitude.
- Thermosphere (85 to 600 km): The layer where the temperature increases with altitude due to the absorption of solar radiation.
- Exosphere (600 km onwards): The outermost layer, where particles can escape into space

KEY ATMOSPHERIC PROPERTIES

•**Temperature:** Affects air density, which in turn affects lift generation. Colder air is denser and provides more lift.

- •**Pressure:** Decreases with altitude. Pilots use pressure readings to determine altitude and maintain safe separation between aircraft.
- •Wind: Affects flight path, ground speed, and fuel consumption. Pilots consider wind speed and direction when planning and executing a flight.
- •Moisture: Contributes to cloud formation, icing, and precipitation. Pilots need to be aware of these hazards to avoid accidents.

Atmospheric Properties

- Because of molecular movement associated with heat warm air occupies more space than an equal mass of cold air.
- In other words, warm air is lighter than cold air.
- Humid air is less dense than dry air, because water vapor molecules weigh less than the nitrogen and oxygen molecules they displace.

METEOROLOGICAL DATA AND FLIGHT PLANNING

•Pilots rely on meteorological data to plan their flights.

•This data includes:

- Surface weather observations (METARs)
- En route weather forecasts (TAFs)
- Upper-air weather charts
- Satellite imagery and radar data

Primary Flight Instruments

- Artificial Horizon (Attitude Indicator): Shows the aircraft's pitch and roll relative to the horizon.
- Airspeed Indicator: Measures the aircraft's speed through the air.
- Altimeter: Indicates the aircraft's altitude above mean sea level.
- Vertical Speed Indicator: Shows the rate at which the aircraft is climbing or descending.
- Turn Coordinator: Indicates the rate and direction of a turn.
- •Heading Indicator: Shows the aircraft's compass heading.

Additional Flight Instruments

- **Gyroscope:** Maintains the artificial horizon's stability.
- **Magnetometer:** Provides a reference for the heading indicator.
- Engine Monitoring System: Displays engine parameters such as temperature, pressure, and RPM.
- Traffic Collision Avoidance System (TCAS): Alerts pilots of potential midair collisions.

Navigation Instruments

 Navigation instruments help pilots determine their position and navigate along their planned flight path:

- •GPS (Global Positioning System): Provides real-time position information using satellite signals.
- •VOR (Very High-frequency Omnidirectional Range): Provides directional guidance to or from a ground station.
- •ILS (Instrument Landing System): Guides the aircraft during landing in low-visibility conditions.
- •ADF (Automatic Direction Finder): Uses radio signals from a ground station to determine direction

Conclusion

- •Flight instruments and navigation instruments work together to ensure safe and efficient flight.
- •Flight instruments provide real-time data on the aircraft's status, while navigation instruments guide pilots along their route.
- •Pilots rely on these instruments for critical decision-making throughout the flight.