

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Solution of First Order Partial Differential Equations

Type-IV
$$f_1(x, p) = f_2(y, q)$$

For this type, there is no sangular Integral.

Give:
$$9^{8}-y=P-x=\kappa$$
 (a constant)

Solve
$$q^{2}-P=y-x$$

Give $q^{2}-y=P-x=K$ (a constant)
 ω $q^{2}-y=K$ $P-x=K$
 $q^{2}=K+y$ $P=K+x$
 $q=\sqrt{K+y}$

$$9 = \sqrt{k+y}$$
we know that $x = \sqrt{Pdx} + \sqrt{q} dy$

$$Z = \int (K+x) dx + \int \int K+y dy$$

$$= Kx + \frac{x^2}{2} + \frac{(K+y)^{3/2}}{3/2} + C$$

$$= kx + \frac{x^2}{2} + \frac{2}{3} (k+y)^3 + c, \text{ which is the complete Integral.}$$

8012.

NOW
$$\sqrt{P} - x = K$$

$$\sqrt{P} = K + x$$

$$P = (K + x)^{2}$$

$$9 = (Y - K)^{2}$$

we know that

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Solution of First Order Partial Differential Equations

$$z = \int (K+x)^{2} dx + \int (y-K)^{2} dy$$

$$= \frac{(K+x)^{3}}{3} + \frac{(y-K)^{3}}{3} + C, \text{ which is the complete Integral.}$$

fond the Complete Integral of

Solo: $Gyn. xp+x^2=y^2+y9=\kappa (a constant)$

Now
$$xp + x^2 = k$$
 $y^2 + yq = k$
 $xp = k - x^2$ $yq = k - y^2$
 $p = \frac{k - x^2}{x}$ $q = \frac{k - y^2}{y}$
 $p = \frac{k}{x}$ $q = \frac{k}{y}$

we know that $x = \int P dx + \int q dy$ $z = \int \left(\frac{K}{x} - x\right) dx + \int \left(\frac{K}{y} - y\right) dy$ $z = \int \left(\frac{K}{x} - x\right) dx + \int \left(\frac{K}{y} - y\right) dy$ $= \kappa \log x - \frac{x^2}{2} + \kappa \log y - \frac{y^2}{2} + c$ $= \kappa \log xy - \left(\frac{x^2 + y^2}{2}\right) + c \cosh xb \ln x$ the co

Hω J. 801re \P + \Q = \x