

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Lagrange's Linear Equation

Logrange's Lanear Equation: The equation is of the form Pp+Qq=R, where P, Q and R are functions of X, Y, Z. THES BE KNOWN as Lagrange's linear eqn. To solve this equalion, It is enough to solve the subsidiary (09) auxillary equation $\frac{dx}{p} = \frac{dy}{R} = \frac{dx}{R}$ The auscillagey egn. can be solved be two ways. i). method of grouping ii) method of multipliens. method of grouping: In the auxillary eqn., $\frac{dx}{P} = \frac{dy}{R} = \frac{dx}{R}$ If the variables can be separated th any path of eqna., then we get a solution to of the form u(x, y) = c, and $v(x, y) = c_2$ ie, $\phi(u, v) = 0$ where ϕ is arbitrary. J. Solve $Px^2 + qy^2 = x^2$ Soln.: $px^2 + qy^2 = x^2$ Thes eqn. is of the form $P \neq Rq = R$ where $P = 2e^2$, $G = y^2$ and $R = 7^2$

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Lagrange's Linear Equation

auxalloous eqn. 95, $\frac{dx}{P} = \frac{dy}{R} = \frac{dz}{R}$ $\frac{dx}{2a} = \frac{dy}{ya} = \frac{dz}{za}$ Take $\frac{dx}{x^2} = \frac{dy}{y^2}$ $\frac{dy}{y^2} = \frac{dx}{z^2}$ $\int x^{-2} dx = \int y^{-2} dy \qquad \int y^{-2} dy = \int x^{-2} dz$ $\frac{x^{-1}}{x^{-1}} = u^{-1}$ Integrating, we get $V = \frac{1}{z} - \frac{1}{y}$ $u = \frac{1}{y} - \frac{1}{x}$ $\phi(u, v) = 0$. The soln 95 $\phi\left(\frac{1}{y}-\frac{1}{z},\frac{1}{z}-\frac{1}{y}\right)=0$ A $\overline{\mathcal{I}}$. Solve $\underline{y^2 z} p + x z q = y^2$ $\frac{y^{2} z}{x} p + x z q = y^{2} \qquad P = \frac{y^{2} z}{x}, \quad R = x z$ $\frac{d x}{P} = \frac{d y}{R} = \frac{d z}{R} \qquad R = y^{2}$ Soln. : AE $\frac{dx}{y^2 z} = \frac{dy}{xz} = \frac{dz}{y^2}$

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Lagrange's Linear Equation

 $\frac{dx}{y^{Q}x} = \frac{dy}{2x}$ $\frac{\partial x}{y^2 x} = \frac{\partial x}{y^2}$ $\frac{x \, dx}{y^2 \, z} = \frac{dy}{x \, z}$ $\frac{x\,dx}{y^{q}\,x} = \frac{dx}{y^{q}}$ x dx = x dxx2 dx = y2 dy Integalating, $\frac{\pi^2}{2} = \frac{\chi^2}{2} + c_2$ $\frac{x^{3}}{3} = \frac{y^{3}}{3} + c_{3}$ x2 x2 = 2 C2 $\frac{x^{2}}{3} - \frac{y^{3}}{3} = c_{3}$ $\frac{x}{3} - \frac{3}{3}$ $x^{3} - y^{3} = 3c_{3} = u \qquad |$ $\therefore \quad \forall e \quad 8ol_{2}. \quad 9s \quad \phi(u, v) = 0$ $\frac{\phi(x^{3} - y^{3})}{\phi(x^{3} - x^{2}) = 0}$ $\frac{\phi(x^{3} - y^{3})}{(x^{3} - x^{3}) = 0}$ ST. $\frac{dx}{x} = \frac{dy}{y}$ $\frac{dx}{x} = \frac{dy}{y}$ $\frac{dx}{x} = \frac{dx}{x}$ $\frac{dx}{x} = \frac{dx}{x}$

(An Autonomous Institution) Coimbatore-641035.

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Lagrange's Linear Equation

1. Solve Ptanz + 9 tany = tan z $P \not\models + Q q = R \Rightarrow P = tanze, Q = tanz, R = tanz$ 80/n. : $\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$ AE Integrating, log(SPnz) = log(SPny) + log(SPnz) + log(z) + log(z) $\log(S(n \times 1) - \log(S(n \times 2)) = \log c_1$ $\log(S(n \times 2) - \log(S(n \times 2)) = \log c_1$ $\log(S(n \times 2)) = \log c_1$ $\log(\frac{S(n \times 2)}{S(n \times 2)}) = \log c_1$ $\log(\frac{S(n \times 2)}{S(n \times 2)}) = \log c_1$ $\frac{SPn x}{SPn y} = C_{1}$ $\frac{SPn x}{SPn y} = C_{2}$ $\frac{SPn x}{SPn x}$ $\Rightarrow v = \frac{SPn x}{SPn x}$ $\Rightarrow \phi(u, v) = 0$ $\Phi\left(\frac{Sin x}{Sin y}, \frac{Sin y}{Sin z}\right) = 0$ 57. Soln ::

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)

Coimbatore-641035.

OGY

UNIT-III PARTIAL DIFFERENTIAL EQUATIONS

Lagrange's Linear Equation

$$A^{E} \quad \frac{dx}{\sqrt{x}} = \frac{dy}{\sqrt{y}} = \frac{dx}{\sqrt{z}}$$

$$\int \frac{dx}{\sqrt{x}} = \int \frac{dy}{\sqrt{y}}$$

$$\int \frac{dy}{\sqrt{y}} = \int \frac{dz}{\sqrt{z}}$$

$$\frac{\sqrt{x}}{\sqrt{x}} = \sqrt{y} + 2c_{1}$$

$$\sqrt{x} = \sqrt{y} + c_{1}$$

$$\sqrt{x} = \sqrt{y} + c_{1}$$

$$\sqrt{x} - \sqrt{y} = c_{1}$$

$$\sqrt{y} = \sqrt{z} + c_{2}$$

$$\sqrt{y} = \sqrt{z} + \sqrt{z}$$

$$\frac{\sqrt{y} - \sqrt{z}}{\sqrt{z}} = \sqrt{z}$$

$$\frac{\sqrt{y}}{\sqrt{z}} = \sqrt{z}$$