
CSE/SNSCT Page 1

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

19CSB303 and Composing Mobile Apps
UNIT 5

Signing

Sign your app

Android requires that all APKs be digitally signed with a certificate before they can be

installed. This document describes how to sign your APKs using Android Studio, including

creating and storing your certificate, signing different build configurations using different

certificates, and configuring the build process to sign your APKs automatically.

Certificates and keystores

A public-key certificate, also known as a digital certificate or an identity certificate, contains

the public key of a public/private key pair, as well as some other metadata identifying the

owner of the key (for example, name and location). The owner of the certificate holds the

corresponding private key.

When you sign an APK, the signing tool attaches the public-key certificate to the APK. The

public-key certificate serves as a "fingerprint" that uniquely associates the APK to you and

your corresponding private key. This helps Android ensure that any future updates to your

APK are authentic and come from the original author. The key used to create this certificate

is called the app signing key.

A keystore is a binary file that contains one or more private keys.

Every app must use the same certificate throughout its lifespan in order for users to be able
to install new versions as updates to the app. For more about the benefits of using the same
certificate for all your apps throughout their lifespans, see Signing Considerations below.

Sign your debug build

When running or debugging your project from the IDE, Android Studio automatically signs

your APK with a debug certificate generated by the Android SDK tools. The first time you

run or debug your project in Android Studio, the IDE automatically creates the debug

keystore and certificate in $HOME/.android/debug.keystore, and sets the keystore and key

passwords.

CSE/SNSCT Page 2

Because the debug certificate is created by the build tools and is insecure by design, most
app stores (including the Google Play Store) will not accept an APK signed with a debug
certificate for publishing.

Android Studio automatically stores your debug signing information in a signing

configuration so you do not have to enter it every time you debug. A signing configuration

is an object consisting of all of the necessary information to sign an APK, including the

keystore location, keystore password, key name, and key password. You cannot directly

edit the debug signing configuration, but you can configure how you sign your release

build.

For more information about how to build and run apps for debugging, see Build and Run
Your App.

Expiry of the debug certificate

The self-signed certificate used to sign your APK for debugging has an expiration date of
365 days from its creation date. When the certificate expires, you will get a build error.

To fix this problem, simply delete the debug.keystore file. The file is stored in the following
locations:

 ~/.android/ on OS X and Linux


 C:\Documents and Settings\<user>\.android\ on Windows XP


 C:\Users\<user>\.android\ on Windows Vista and Windows 7, 8, and 10

The next time you build and run the debug build type, the build tools will regenerate a new
keystore and debug key. Note that you must run your app, building alone does not
regenerate the keystore and debug key.

Manage your key

Because your app signing key is used to verify your identity as a developer and to ensure

seamless and secure updates for your users, managing your key and keeping it secure are

very important, both for you and for your users. You can choose either to opt in to use

Google Play App Signing to securely manage and store your app signing key using Google's

infrastructure or to manage and secure your own keystore and app signing key.

By opting in to Google Play App Signing, you will gain the following benefits:

 Ensure that the app signing key is not lost. Loss of the app signing key means that an
app cannot be updated, so it is critical for it not to be lost.



 Ensure that the app signing key is not compromised. Compromise of the key would
allow a malicious attacker to deploy a malicious version of your app as an update over an

CSE/SNSCT Page 3

Figure 1. Signing an app with Google Play App Signing

existing install. With Play App Signing, developers only manage an upload key which can be
reset in the case of loss and compromise. In the event of compromise, an attacker also
needs access to the developer account to be able to do anything malicious.

Use Google Play App Signing

When using Google Play App Signing, you will use two keys: the app signing key and the
upload key. Google manages and protects the app signing key for you, and you keep the
upload key and use it to sign your apps for upload to the Google Play Store.

When you opt in to use Google Play App Signing, you export and encrypt your app signing

key using the Play Encrypt Private Key tool provided by Google Play, and then upload it to

Google's infrastructure. Then you create a separate upload key and register it with Google.

When you are ready to publish, you sign your app using the upload key and upload it to

Google Play. Google then uses the upload certificate to verify your identity, and re-signs

your APK with your app signing key for distribution as shown in figure 1. (If you do not

already have an app signing key, you can generate one during the sign-up process.)

When you use Google Play App Signing, if you lose your upload key, or if it is compromised,

you can contact Google to revoke your old upload key and generate a new one. Because

your app signing key is secured by Google, you can continue to upload new versions of your

app as updates to the original app, even if you change upload keys.

CSE/SNSCT Page 4

Figure 2. Signing an app when you manage your own app signing key

Manage your own key and keystore

Instead of using Google Play App Signing, you can choose to manage your own app signing

key and keystore. If you choose to manage your own app signing key and keystore, you are

responsible for securing the key and the keystore. You should choose a strong password for

your keystore, and a separate strong password for each private key stored in the keystore.

You must keep your keystore in a safe and secure place. If you lose access to your app

signing key or your key is compromised, Google cannot retrieve the app signing key for

you, and you will not be able to release new versions of your app to users as updates to the

original app. For more information, see Secure your key, below.

If you manage your own app signing key and keystore, when you sign your APK, you will
sign it locally using your app signing key and upload the signed APK directly to the Google
Play Store for distribution as shown in figure 2.

Sign an APK

Regardless of how you choose to manage your key and keystore, you can use Android
Studio to sign your APKs (with either the upload key or the app signing key), either
manually, or by configuring your build process to automatically sign APKs.

If you choose to manage and secure your own app signing key and keystore, you will sign

your APKs with your app signing key. If you choose to use Google Play App Signing to

manage and secure your app signing key and keystore, you will sign your APKs with your

upload key.

