
LCD Interfacing with PIC16F877A 16×2 LCD

Liquid Crystal Displays (LCDs) like computers, digital watches, and also DVD
and CD players. They have become very common and have taken a giant leap in the
screen industry by clearly replacing the use of Cathode Ray Tubes (CRT).

CRT draws more power than LCD and is also bigger and heavier. All of us have seen
an LCD, but no one knows the exact working of it.

Let us have a look at the working of an LCD. Here we are using an alphanumeric LCD
16×2.

A 16×2 LCD is a very basic module and is very commonly used in various devices and
circuits. These modules are preferred over seven segments and other multi-segment
LEDs.

The reasons are that LCDs are economical; easily programmable; and have no
limitation of displaying special & even custom characters (unlike in seven segments),
animations, and so on.

A 16×2 LCD means it can display 16 characters per line, and there are 2 such lines. In
this LCD, each character is displayed in a 5×7 pixel matrix.

This LCD has two registers, namely, Command and Data.

The command register stores the command instructions given to the LCD. A command
is an instruction given to LCD to do a predefined task like initializing it, clearing its
screen, setting the cursor position, controlling the display, etc.

The data register stores the data to be displayed on the LCD. The data is the ASCII
value of the character to be displayed on the LCD.

https://www.electronicsforu.com/technology-trends/learn-electronics/16x2-lcd-pinout-diagram
https://www.electronicsforu.com/technology-trends/learn-electronics/16x2-lcd-pinout-diagram

Pin Description

 Pin

No
Function Name

1 Ground (0V) Ground

2 Supply voltage; 5V (4.7V – 5.3V) Vcc

3 Contrast adjustment; through a variable resistor VEE

4
Selects command register when low; and data

register when high
Register Select

5
Low to write to the register; High to read from the

register
Read/write

6
Sends data to data pins when a high-to-low pulse

is given
Enable

7

8-bit data pins

DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 Backlight VCC (5V) Led+

16 Backlight Ground (0V) Led-

The LCD module requires 3 control lines as well as either 4 or 8 I/O lines for the data bus.
The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit data
bus.

If a 4-bit data bus is used, the LCD will require a total of 7 data lines (3 control lines plus the
4 lines for the data bus). If an 8-bit data bus is used, the LCD will require a total of 11 data
lines (3 control lines plus the 8 lines for the data bus).

The three control lines are referred to as EN, RS, and RW.

The EN line is called “Enable.” This control line is used to tell the LCD that you are sending
it data. To send data to the LCD, your program should make sure this line is low (0) and
then set the other two control lines and/or put data on the data bus.

When the other lines are completely ready, bring ENhigh (1) and wait for the minimum
amount of time required by the LCD datasheet (this varies from LCD to LCD), and end by
bringing it low (0) again.

The RS line is the “Register Select” line. When RS is low (0), the data is to be treated as a
command or special instruction (such as a clear screen, position cursor, etc.).

When RS is high (1), the data being sent is text data which should be displayed on the
screen. For example, to display the letter “T” on the screen, you would set RS high.

The RW line is the “Read/Write” control line. When RW is low (0), the information on the
data bus is being written to the LCD. When RW is high (1), the program is effectively
querying (or reading) the LCD. Only one instruction (“Get LCD status”) is a read command.

All others are write commands–so RW will almost always be low.

Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected
by the user). In the case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2,
DB3, DB4, DB5, DB6, and DB7.

LCD COMMANDS

Now let’s move to programming.

https://embetronicx.com/wp-content/uploads/2017/06/dd.png

LCD Interfacing with PIC16F877A – Circuit

• RS – Port C .0 (RC0)
• RW – Port C.1 (RC1)
• EN – Port C.2 (RC2)
• Data lines – Port B

• #include<pic.h>

• #define rs RC0

• #define rw RC1

• #define en RC2

• #define delay for(j=0;j<1000;j++)

• int j;

• void lcd_init();

• void cmd(unsigned char a);

• void dat(unsigned char b);

• void show(unsigned char *s);

https://embetronicx.com/wp-content/uploads/2017/07/lcd-interfacing-with-pic16f877a.gif

• __CONFIG(FOSC_HS & WDTE_OFF & PWRTE_OFF & CP_OFF & BOREN_ON & LVP_OFF &

CPD_OFF & WRT_OFF & DEBUG_OFF);

• void main()

• {

• unsigned int i;

• TRISB=TRISC0=TRISC1=TRISC2=0;

• lcd_init();

• cmd(0x8A); //forcing the cursor at 0x8A position

• show("WELCOME TO EmbeTronicX");

• while(1) {

• for(i=0;i<15000;i++);

• cmd(0x18);

• for(i=0;i<15000;i++);

• }

• }

• void lcd_init()

• {

• cmd(0x38);

• cmd(0x0c);

• cmd(0x06);

• cmd(0x80);

• }

• void cmd(unsigned char a)

• {

• PORTB=a;

• rs=0;

• rw=0;

• en=1;

• delay;

• en=0;

• }

• void dat(unsigned char b)

• {

• PORTB=b;

• rs=1;

• rw=0;

• en=1;

• delay;

• en=0;

• }

• void show(unsigned char *s)

• {

• while(*s) {

• dat(*s++);

• }

• }

