CONDUCTION

PROBLEMS \& SOLUTIONS

The inner surface of furnace wall is at $200^{\circ} \mathrm{C}$ and outer surface at $50^{\circ} \mathrm{C}$. Calculate the heat lost per m^{2} area of the wall. If thermal conductivity of the brick is $0.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ \& the wall thickness is 200 mm .

Sol: Given $\mathrm{T}_{1}=200^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{T}_{2} & =50^{\circ} \mathrm{C} \\
\mathrm{~L} & =200 \mathrm{~mm}=0.2 \\
\mathrm{k} & =0.5 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}
\end{aligned}
$$

Heat lost $=-\mathrm{kA} \frac{d T}{d x}$
Heat lost $/ \mathrm{m}^{2}=\frac{-K\left(T_{2}-T_{1}\right)}{L}$

$$
=\frac{-0.5(50-200)}{0.2}=375 \mathrm{~W} / \mathrm{m}^{2}
$$

The wall of a boiler is made up of 250 mm of the brick, K_{FB} $=1.05 \mathrm{~W} / \mathrm{m} \mathrm{K} ; 120 \mathrm{~mm}$ of insulation brick $\mathrm{K}_{\mathrm{IB}}=0.15 \mathrm{~W} / \mathrm{m}$ K , and 200 mm of red brick, $\mathrm{K}_{\mathrm{RB}}=0.85 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The inner and outer surface temperatures of the wall are $850^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ respectively. Calculate the temperatures at the contact surfaces.

Sol:

$$
\begin{aligned}
& \text { The rate of heat flow per square meter is } \\
& \frac{Q}{A}=q=\frac{\left(t_{1}-t_{4}\right)}{\frac{x_{1}}{k_{F B}}+\frac{x_{2}}{k_{I B}}+\frac{x_{3}}{k_{R B}}} \\
& \frac{Q}{A}=\frac{1 \times(850-65)}{\frac{0.250}{1.05}+\frac{0.120}{0.15}+\frac{0.200}{0.85}} \\
& =616.5 \mathrm{~W} / \mathrm{m}^{2} \\
& \frac{Q}{A}=\frac{t_{1}-t_{2}}{\frac{x_{1}}{k_{F B}}}=\frac{t_{2}-t_{3}}{\frac{x_{2}}{k_{\text {IB }}}}=\frac{t_{3}-t_{4}}{\frac{x_{3}}{k_{\mathrm{RB}}}} \\
& \therefore \quad \frac{Q}{A}=\frac{t_{1}-t_{2}}{\frac{x_{1}}{k_{\mathrm{FB}}}} \Rightarrow 616.5=\frac{850-t_{2}}{\frac{0.250}{1.05}} \\
& \Rightarrow \quad t_{2}=703^{\circ} \mathrm{C} \\
& \text { Similarly } t_{3} \text { can be determined from the } \\
& \text { relation } \\
& \frac{Q}{A}=\frac{t_{2}-t_{3}}{\frac{x_{2}}{k_{\text {IB }}}} \Rightarrow 616.5=\frac{703-t_{3}}{\frac{0.120}{0.15}} \\
& \therefore \Rightarrow t_{3}=209.8^{\circ} \mathrm{C}
\end{aligned}
$$

The Boiler wall is made up of two layers, A \& B. Thickness \& Thermal conductivity of A are 240 mm and $0.2 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ respectively. For B , thickness \& thermal conductivity are 525 mm and $0.3 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ respectively. Inner surface of A is maintained at $1000^{\circ} \mathrm{C}$ and outer surface of B is maintained at $250^{\circ} \mathrm{C}$. If there is contact thermal resistance of $0.05^{\circ} \mathrm{C} / \mathrm{W}$ per unit area exists at the interface.
Cal. i. the heat lost per m^{2} area
II. The temperature drop at the interface

Sol: Given, $\mathrm{T}_{1}=1000^{\circ} \mathrm{C}, \mathrm{T}_{4}=250^{\circ} \mathrm{C}$
$\mathrm{L}_{\mathrm{A}}=240 \mathrm{~mm}=0.24 \mathrm{~m}$
$\mathrm{L}_{\mathrm{B}}=525 \mathrm{~mm}=0.525 \mathrm{~m}$
$\mathrm{K}_{\mathrm{A}}=0.2 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}$ $\mathrm{K}_{\mathrm{B}}=0.3 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}$ $\left(\mathrm{R}_{\text {th }}\right)_{\text {contact }}=0.05^{\circ} \mathrm{C} / \mathrm{W}$
\therefore Temperature drop at interface $=\mathrm{T}_{2}-\mathrm{T}_{3}$

$$
\begin{aligned}
& =700-687.5 \\
& =12.5^{\circ} \mathrm{C}
\end{aligned}
$$

Heat Lost per m^{2} area.

$$
\begin{aligned}
\frac{\mathrm{Q}}{\mathrm{~A}}=\mathrm{q} & =\frac{\Delta \mathrm{T}}{\sum \mathbf{R}_{\mathrm{th}}}=\frac{\Delta \mathrm{T}}{\mathbf{R}_{\mathrm{th}-\mathrm{A}}+\mathbf{R}_{\mathrm{th}-\text { contact }}+\mathbf{R}_{\mathrm{th}-\mathrm{B}}} \\
& =\frac{T_{1}-\mathrm{T}_{4}}{\frac{\mathrm{~L}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{A}}}+\mathbf{R}_{\mathrm{th}-\text { contact }}+\frac{\mathrm{L}_{\mathrm{B}}}{\mathrm{~K}_{\mathrm{B}}}} \\
& =\frac{1000-250}{\frac{0.24}{0.2}+0.05+\frac{0.525}{0.3}} \\
& =\frac{750}{3}=250 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

And also we can write.

$$
\begin{aligned}
& q=\frac{T_{1}-T_{2}}{\frac{L_{a}}{K_{A}}}=\frac{T_{3}-T_{4}}{\frac{L_{B}}{K_{B}}} \\
& 250=\frac{1000-T_{2}}{\frac{0.240}{0.2}}=\frac{T_{3}-250}{\frac{0.525}{0.3}} \\
& 1000-T_{2}=250 \times \frac{0.24}{0.2} \\
& 1000-T_{2}=300 \\
& \Rightarrow T_{2}=700^{\circ} C \\
& T_{3}-250=250 \times \frac{0.525}{0.3} \\
& T_{3}=687.5
\end{aligned}
$$

A furnace wall 200 mm thick is made of a material having thermal conductivity of $1.45 \mathrm{~W} / \mathrm{m}$. K. The inner and outer surface are exposed to average temperatures of $350^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. If the gas and air film coefficients are 58 and $11.63 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ respectively, find the rate of heat transfer through a wall of 2.5 square meters. Also, find the temperatures on the two sides of the wall.

Sol: Given, $x=200 \mathrm{~mm}=0.2 \mathrm{~m}$,
$\mathrm{k}=1.45 \mathrm{~W} / \mathrm{mK}, \mathrm{A}=2.5 \mathrm{~m}^{2}$
$\mathrm{T}_{\mathrm{A}}=350^{\circ} \mathrm{C}=623 \mathrm{~K}, \mathrm{~T}_{\mathrm{B}}=40^{\circ} \mathrm{C}=313 \mathrm{~K}$,
$\mathrm{h}_{\mathrm{A}}=58 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~h}_{\mathrm{B}}=11.63 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$,
Rate of heat transfer, $Q=\frac{A\left(T_{A}-T_{B}\right)}{\frac{1}{h_{A}}+\frac{x}{k}+\frac{1}{h_{B}}}$

$$
=\frac{2.5(623-313)}{\frac{1}{58}+\frac{0.2}{1.45}+\frac{1}{11.63}}=3214 \mathrm{~J} / \mathrm{s}
$$

Let, $\mathrm{T}_{1}=$ Temperature on the inner side of the wall, and
$\mathrm{T}_{2}=$ Temperature on the outside of the wall.

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{h}_{\mathrm{A}} \cdot \mathrm{~A}\left(\mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{1}\right) \\
3214 & =58 \times 2.5\left(623-\mathrm{T}_{1}\right) \\
\Rightarrow \mathrm{T}_{1} & =600.84 \mathrm{~K}=327.84^{0} \mathrm{C}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{h}_{\mathrm{B}} \mathrm{~A}\left(\mathrm{~T}_{2}-\mathrm{T}_{\mathrm{B}}\right) \\
3214 & =11.63 \times 2.5\left(\mathrm{~T}_{2}-313\right) \\
\mathrm{T}_{2} & =423.5 \mathrm{~K}=150.5^{\circ} \mathrm{C}
\end{aligned}
$$

A steam pipe of inner diameter 200 mm is covered with 50 mm thick high insulated material of thermal conductivity $\mathrm{k}=0.01 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}$. The inner and outer surface temperatures maintained at $500^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. Calculate the total heat loss per meter length of pipe?

Sol: Given, $r_{1}=\frac{200}{2}=100 \mathrm{~mm}=0.1 \mathrm{~m}$

$$
\begin{aligned}
r_{2} & =\frac{200+100}{2}=150 \mathrm{~mm}=0.15 \mathrm{~m} \\
\mathrm{k} & =0.01 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \\
\mathrm{~T}_{1} & =500^{\circ} \mathrm{C}, \mathrm{~T}_{2}=100^{\circ} \mathrm{C}
\end{aligned}
$$

Heat transfer is given by

$$
\begin{aligned}
Q & =\frac{T_{1}-T_{2}}{\ell \frac{\ln \left(\frac{r_{2}}{r_{1}}\right)}{2 \pi \mathrm{k} \ell}}=\frac{500-100}{\frac{\ln \left(\frac{0.15}{0.1}\right)}{2 \pi \times 0.01 \times 1}} \\
& =61.98 \mathrm{~W} .
\end{aligned}
$$

A 25 cm steam main 225 meter long is covered with 5 cm of high temperature insulation ($\mathrm{k}=0.095 \mathrm{~W} / \mathrm{m} \mathrm{K}$) and 4 cm of low temperature insulation ($\mathrm{k}=0.065 \mathrm{~W} / \mathrm{m} \mathrm{K}$). The inner and outer surface temperatures as measured are $400^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. Neglect heat conduction through pipe material.
Determine
i. The total heat loss per hour.
ii. The total heat loss per sq. m of outer surface.
iii. The heat loss per sq.m of pipe surface.
iv. The temperature between the two layers of insulation.

Sol: Outside diameter of pipe, $d_{1}=25 \mathrm{~cm}$
Outside diameter of first layer,

$$
d_{2}=25+2 \times 5=35 \mathrm{~cm}
$$

Outside diameter of second layer,
$d_{3}=35+2 \times 4=43 \mathrm{~cm}$
$\mathrm{k}_{1}=0.095 \mathrm{~W} / \mathrm{m} \mathrm{K}, \mathrm{k}_{2}=0.065 \mathrm{~W} / \mathrm{m} \mathrm{K}$
(i) Total heat loss,

$$
\begin{aligned}
Q_{\text {total }} & =\frac{2 \pi \rho\left(T_{1}-T_{3}\right)}{\frac{\ln \left(d_{2} / d_{1}\right)}{k_{1}}+\frac{\ln \left(d_{3} / d_{2}\right)}{k_{2}}} \\
& =\frac{2 \pi \times 225(400-50)}{\frac{\ln (35 / 25)}{0.095}+\frac{\ln (43 / 35)}{0.065}} \\
= & 73754 \mathrm{~W}=\frac{73754 \times 3600}{1000} \mathrm{~kJ} / \mathrm{h} \\
& =265515 \mathrm{~kJ} / \mathrm{h}
\end{aligned}
$$

(ii) Total heat lost per sq. m of outer surface

$$
\begin{aligned}
& =\frac{Q_{\text {total }}}{\pi d_{3} \ell}=\frac{265515}{\pi \times 0.43 \times 225} \\
& =873.5 \mathrm{~kJ} / \mathrm{h}
\end{aligned}
$$

(iii) Heat loss per sq. m of pipe surface

$$
\begin{aligned}
& =\frac{Q_{\text {total }}}{\pi \mathrm{d}_{1} \ell}=\frac{265514}{\pi \times 0.25 \times 225} \\
& =15025.5 \mathrm{~kJ} / \mathrm{h}
\end{aligned}
$$

(iv) For temperature between two layers

$$
\begin{aligned}
\frac{Q}{\ell} & =\frac{2 \pi k\left(t_{1}-t_{2}\right)}{\ln \left(d_{2} / d_{1}\right)} \\
\frac{73754}{225} & =\frac{2 \pi \times 0.095\left(400-t_{2}\right)}{\ln (35 / 25)} \\
\therefore \quad t_{2} & =215^{\circ} \mathrm{C}
\end{aligned}
$$

Water is pumped through an iron pipe ($\mathrm{k}=67.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$), 2 meters long as the rate of $1000 \mathrm{~kg} / \mathrm{min}$. The inner and outer diameters of the tube are 50 mm and 60 mm respectively. Calculate the rise in temperature of water when the outside of the tube is heated to a temperature of $600^{\circ} \mathrm{C}$. The initial temperature of the water is $30^{\circ} \mathrm{C}$.

Sol: Given, $\mathrm{k}=67.2 \mathrm{~W} / \mathrm{mK}, \mathrm{L}=2 \mathrm{~m}$,

$$
\mathrm{m}=1000 \mathrm{~kg} / \mathrm{min}
$$

$$
\mathrm{r}_{1}=25 \mathrm{~mm}=0.025 \mathrm{~m}
$$

$$
\mathrm{r}_{2}=30 \mathrm{~mm}=0.03 \mathrm{~m},
$$

$$
\mathrm{T}_{1}=600^{\circ} \mathrm{C}=873 \mathrm{~K},
$$

$$
\mathrm{T}_{\mathrm{wl}}=30^{\circ} \mathrm{C}=303 \mathrm{~K}
$$

Let $\mathrm{T}_{\mathrm{w} 2}=$ Final temperature of water in K .
Heat transferred through the tube per second,

$$
\begin{align*}
\mathrm{Q} & =\text { Mass } \times \text { Sp. Heat } \times \text { Rise in temperature. } \\
& =\frac{1000 \times 4.2\left(\mathrm{~T}_{\mathrm{w} 2}-303\right)}{60} \\
& =70\left(\mathrm{~T}_{\mathrm{w} 2}-303\right) \mathrm{kJ} / \mathrm{s}-\cdots-- \text { (i) } \tag{i}
\end{align*}
$$

We also know that

$$
Q=\frac{2 \pi \ell k\left(T_{1}-T_{2}\right)}{\ln \left(\frac{r_{2}}{r_{1}}\right)}
$$

$$
\begin{align*}
& =\frac{2 \pi \times 2 \times 67.2\left[873-\frac{\left(303+T_{w 2}\right)}{2}\right]}{\ln \left(\frac{0.03}{0.025}\right)} \\
& =4632\left[873-\frac{\left(303+\mathrm{T}_{\mathrm{w} 2}\right)}{2}\right] \\
& =4632\left(721.5-\frac{\mathrm{T}_{\mathrm{w} 2}}{2}\right) \\
& =4.632\left(721.5-\frac{\mathrm{T}_{\mathrm{w} 2}}{2}\right) \mathrm{kJ} / \mathrm{s} \cdots \tag{ii}
\end{align*}
$$

Equating equations (i) and (ii)

$$
\begin{aligned}
70\left(\mathrm{~T}_{\mathrm{w} 2}-303\right) & =4.632\left(721.5-\frac{\mathrm{T}_{\mathrm{w} 2}}{2}\right) \mathrm{kJ} / \mathrm{s} \\
\mathrm{~T}_{\mathrm{w} 2} & =339.5 \mathrm{~K}=66.5^{\circ} \mathrm{C}
\end{aligned}
$$

\therefore Rise in temperature

$$
=\mathrm{T}_{\mathrm{w} 2}-\mathrm{T}_{\mathrm{w} 1}=66.5-30=36.5^{\circ} \mathrm{C}
$$

A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of heat leakage, if the temperature difference between the inner and outer surface is $200^{\circ} \mathrm{C}$. Thermal conductivity of the material of sphere is 0.3 $\mathrm{kJ} / \mathrm{m}-\mathrm{h}^{\circ} \mathrm{C}$.

Sol: Given,
Outside diameter of sphere $\mathrm{d}_{2}=1.2 \mathrm{~m}$

$$
\mathbf{r}_{2}=0.6 \mathrm{~m}
$$

Inside diameter of sphere

$$
\begin{aligned}
& =1.2-2 \times 0.100=1 \mathrm{~m} \\
& r_{1}=0.5 \mathrm{~m} \\
& t_{1}-t_{2}=200^{\circ} \mathrm{C}, \quad \mathrm{k}=0.3 \mathrm{~kJ} / \mathrm{m}^{0} \mathrm{C}
\end{aligned}
$$

Heat transfer in hollow sphere is given by,

$$
\begin{aligned}
& Q=\frac{4 \pi k r_{1} r_{2}\left(t_{1}-t_{2}\right)}{\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)} \\
= & \frac{4 \pi \times 0.3 \times 0.5 \times 0.6 \times 200}{0.100}=2262 \mathrm{~kJ} / \mathrm{h}
\end{aligned}
$$

A cylinder having its diameter 30 cm and length 60 cm , has hemispherical ends, giving an overall length of 90 cm . The cylinder which is maintained at a steady temperature of $60^{\circ} \mathrm{C}$ is covered to a depth of 5 cm with lagging which has a coefficient of conductivity of 0.14 W / mK. Calculate the rate of heat loss if the outer surface of lagging is at $30^{\circ} \mathrm{C}$.

Sol: Rate of heat loss from cylindrical portion

$$
\begin{aligned}
\mathrm{Q} & =\frac{2 \pi \ell k\left(t_{1}-t_{2}\right)}{\ln \left(r_{2} / r_{1}\right)} \\
& =\frac{2 \times \pi \times 0.6 \times 0.14(60-30)}{\ln (20 / 15)}=55 \mathrm{~W}
\end{aligned}
$$

Rate of heat loss from spherical portion

$$
\begin{aligned}
Q & =\frac{4 \pi k r_{1} r_{2}\left(t_{1}-t_{2}\right)}{\left(r_{2}-r_{1}\right)} \\
& =\frac{4 \pi \times 0.14 \times 0.15 \times 0.20(60-30)}{0.20-0.15} \\
& =31.667 \mathrm{~W}
\end{aligned}
$$

Hence total heat loss

$$
=55+31.66=86.667 \mathrm{~W}
$$

The temperature on the two surfaces of a 1000 mm thick steel plate, $\left(k=50 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$ having a uniform volumetric heat generation of $20 \times 10^{3} \mathrm{~W} / \mathrm{m}^{3}$, are $300^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$. Determine the following:
i) the temperature distribution across the plate
ii) the value and position of the maximum temperature, and
iii) the flow of heat from each surface of the plate

Sol: Given,

$$
\begin{aligned}
\mathrm{L} & =1000 \mathrm{~mm}=1 \mathrm{~m} \\
\mathrm{t}_{\mathrm{w} 1} & =300^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{w} 2}=200^{\circ} \mathrm{C} \\
\mathrm{q}_{\mathrm{g}} & =20 \times 10^{6} \mathrm{~W} / \mathrm{m}^{3} ; \\
\mathrm{k} & =50 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}
\end{aligned}
$$

(i) The temperature distribution, when both the surfaces of the wall have different temperatures, is given by

$$
\mathrm{t}=\mathrm{t}_{\mathrm{w} 1}+\left(\frac{\mathrm{q}_{\mathrm{g}}}{2 \mathrm{k}}(\mathrm{~L}-\mathrm{x})+\frac{\left(\mathrm{t}_{\mathrm{w} 2}-\mathrm{t}_{\mathrm{w} 1}\right)}{\mathrm{L}}\right) \mathrm{x}
$$

Substituting the given values

$$
\begin{aligned}
t & =300+\left(\frac{20000}{2 \times 50}(1-x)+\frac{(200-300)}{1}\right) x \\
& =300+(200(1-x)-100) x \\
t & =300+100 x-200 x^{2}
\end{aligned}
$$

(ii) In order to determine the position of maximum temperature, differentiating the above expression and equating it to zero, we obtain

$$
\begin{aligned}
& \frac{d t}{d x}=100-400 x=0 \\
\therefore x= & \frac{100}{400}=0.25 \mathrm{mor} 25 \mathrm{~mm}
\end{aligned}
$$

The maximum temperature is

$$
\begin{aligned}
t_{\max } & =300+100 \times 0.25-200 \times 0.25^{2} \\
& =312.5^{\circ} \mathrm{C}
\end{aligned}
$$

(iii) The flow of heat from each surface of the plate, $\mathrm{q}_{1}, \mathrm{q}_{2}$:

The heat flow at the left face $(x=0)$

$$
\begin{aligned}
\mathbf{q}_{1} & =-k A\left(\frac{d t}{d x}\right)_{\mathrm{x}=0} \\
& =-50 \times 1 \times(100-400 \mathrm{x})_{x=0} \\
& =-5000 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

The negative sign signifies that the heat flo at the left face is in a direction opposite to th of measurement of the distance.

$$
\begin{aligned}
\mathrm{q}_{2} & =50 \times 1 \times(100-400 \times \mathrm{x}) \times=1 \\
& =50 \times 1 \times(100-400 \times 1) \\
& =-15000 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

A 3 mm diameter wire ($k=20 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, resistivity, $\rho=10 \times 10^{-8} \Omega \mathrm{~m}$) 100 m long has a voltage of 100 V impressed on it. The outer surface of the wire is maintained at $100^{\circ} \mathrm{C}$. Calculate the centre temperature of the wire. If the heated wire is submerged in a fluid maintained at $50^{\circ} \mathrm{C}$, find the heat transfer coefficient on the surface of the wire.

Sol: Given, Radius of wire,

$$
\mathrm{R}=1.5 \mathrm{~mm}=0.0015 \mathrm{~m}
$$

Length of the wire, $L=100 \mathrm{~m}$
Voltage impressed $=100 \mathrm{~V}$ Thermal conductivity, $\mathrm{k}=20 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ Resistivity, $\rho=10 \times 10^{-8} \Omega \mathrm{~m}$ The temperature of the wire, $t_{w}=100^{\circ} \mathrm{C}$ Fluid temperature, $\mathbf{t}_{\mathrm{a}}=50^{\circ} \mathrm{C}$

Resistance of the wire, $R=\frac{\rho L}{A}$

$$
=\frac{10 \times 10^{-8} \times 100}{\pi \times 0.0015^{2}}=1.415 \Omega
$$

Rate of heat generation,

$$
\mathrm{Q}_{\mathrm{g}}=\mathrm{VI}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{100^{2}}{1.415}=7067 \mathrm{~W}
$$

\therefore Rate of heat generation per unit volume

$$
\begin{aligned}
q_{g} & =\frac{Q_{g}}{A L} \\
& =\frac{7067}{\pi \times 0.0015^{2} \times 100}=9.998 \times 10^{6} \mathrm{~W} / \mathrm{m}^{3}
\end{aligned}
$$

Centre temperature is given by

$$
\begin{aligned}
t_{\max } & =t_{w}+\frac{q_{g}}{4 k} R^{2} \\
& =100+\frac{9.998 \times 10^{6}}{4 \times 20} \times 0.0015^{2}=100.28^{\circ} \mathrm{C}
\end{aligned}
$$

Heat transfer coefficient, h :

$$
\begin{aligned}
t_{w} & =t_{a}+\frac{q_{g}}{2 h} \cdot R \\
100 & =50+\frac{9.998 \times 10^{6}}{2 h} \times 0.0015 \\
h & =\frac{7498.5}{50}=149.97 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The meat rolls of 25 mm diameter having $\mathrm{k}=1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ are heated up with the help of microwave heating for roasting. The centre temperature of the rolls in maintained at $100^{\circ} \mathrm{C}$ when the surrounding temperature is $30^{\circ} \mathrm{C}$. The heat transfer coefficient on the surface of the meat roll is $20 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. Find the microwave heating capacity required in $\mathrm{W} / \mathrm{m}^{3}$.
ol: Given, $\mathbf{R}=0.0125 \mathrm{~m}, \quad \mathrm{k}=1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$;

$$
\mathrm{t}_{\max }=100^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{a}}=30^{\circ} \mathrm{C}, \mathrm{~h}=20 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

Microwave heating capacity, q_{g} :
The maximum temperature occurs at the centre and is given by

$$
\begin{aligned}
& \mathbf{t}_{\max }=\mathbf{t}_{\mathrm{a}}+\frac{\mathbf{q}_{\mathrm{g}}}{2 \mathbf{h}} \times \mathbf{R}+\frac{\mathbf{q}_{\mathrm{g}}}{4 \mathrm{k}} \times \mathbf{R}^{2} \\
& \mathbf{1 0 0}=30+\frac{\mathbf{q}_{\mathrm{g}} \times 0.0125}{2 \times 20}+\frac{\mathbf{q}_{\mathrm{g}} \times 0.0125^{2}}{4 \times 1} \\
& \mathrm{q}_{\mathrm{g}}=\frac{(100-30)}{(0.0003125+0.00003906)} \\
& \quad=1.991 \times 10^{5} \mathrm{~W} / \mathrm{m}^{3}
\end{aligned}
$$

