AU424 - Finite Element Methods and Analysis

Unit -5 – Computer Implementation

Contents:

- ✓ An overview of FE Analysis Program
- ✓ Preprocessing
- ✓ Solution
- ✓ Post Processing

FINITE ELEMENT PROCEDURE

- Discretization: dividing the structure into a set of simpleshaped, contiguous elements, connected by sharing nodes
- Nodal displacements are unknown DOFs
- Element level matrix equations are assembled to form global level equations
- Specify displacement BC and applied loads
- The global matrix equations are solved for the unknown DOFs
- From the displacements at the nodes, calculate strains and then stresses in each element
- Difficulties
 - How to model the problem using finite elements?
 - What kind of elements and how many elements should be used?
 - How the BCs and loads should be specified?
 - How to *interpret* the results?

FINITE ELEMENT PROCEDURE cont.

PRELIMINARY ANALYSIS

- One of the most important steps in FEA procedure
- Often ignored by many engineers
- Provide an insight into the problem and predict behavior
- Use analytical methods to estimate the expected solution (FBD, equilibriums, mechanics of materials, etc)
- Simplify the problem using bars and beams
- Predict level of displacement and stress as well as critical locations
- Before FEA, engineers should know the range of expected solution and candidates of critical locations

PREPROCESSING

- preparing a model for finite element analysis
 - Modeling a physical problem using finite elements
 - Choosing types and number of elements
 - Applying displacement boundary conditions
 - Applying external loads
- The finite element model is not a replication of the physical model, but a mathematical representation of the physical model
- Finite element model can be different from physical model.
 - One or two beam elements for the complex space rocket system if the interest is in the max bending moment of the rocket.
 - The plate with a hole can be modeled using plane stress elements with the thickness

The behavior of FE model is different from that of physics

$$\frac{\mathsf{EA}}{\mathsf{L}} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} \mathsf{R}_{1x} \\ \mathsf{R}_{1y} \\ 0 \\ -\mathsf{F} \\ \mathsf{R}_{3x} \\ \mathsf{R}_{3y} \end{bmatrix} \qquad \Longrightarrow \begin{array}{c} \mathsf{EA} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ -\mathsf{F} \end{bmatrix}$$

No stiffness in the vertical direction!

- Units
 - STUPIDEST mistakes come from UNITS!
 - Consistent units must be used throughout FE procedure
 - In SI unit, order of deformation ~ 10⁻⁶m, order of stress ~ 10⁸Pa
- Automatic mesh generation
 - Many commercial programs can automatically generate nodes and elements using GUI
 - Work with solid model

Mesh control

- Provide mesh parameters that define the size and type of elements and other attributes
- Global or local element size, curvature-based element size
- Smaller element size for location of interest

Element size = 0.1

Element size = 0.2

- Mesh quality
 - A good quality mesh is a recipe of success in finite element analysis
 - Element shape: Best for square element
 - Aspect ratio: Large aspect ratio elements should be avoided
 - Element size: Quick transition from small to large elements should be avoided
 - Smaller elements must be used where stresses change quickly

- Checking the mesh
 - Duplicated nodes: Two nodes at the same location are associated with different elements; artificial crack in the model
 - Missing elements: Can be detected using shrink plot of elements

Mismatched boundary: Produce artificial crack

Material properties

- Isotropic, linear elastic material: Young's modulus, shear modulus, Poisson's ratio
- Only two are independent
- Sometimes, failure stress is required for estimating safety
- Anisotropic material, composite material, elasto-plastic material, etc
- Unit of material properties must be consistent with that of FE model

- Choosing Element Type and Size
 - Different elements and models can be used for solving the same problem
 - Engineers should understand the capability of the elements and models so that proper elements should used

- Solid element:
 - Can represent structural details, but computationally expensive
- Shell/plate element
 - The sheet or plate can be represented using 2D plane with thickness
 - More efficient than solid element
 - Good for thin wall where bending and in-plane forces are important
- Beam/frame element
 - Most efficient way of modeling
 - Good for predicting the overall deflection and bending moments of slender member
 - Limited to predicting local stress concentrations at the point of applied load or at junction

Element Types

Element	Name
oo	1D linear element
	2D triangular element
	2D rectangular element
	3D tetrahedral element
	3D hexahedral element

- Element order
 - We only learned linear elements
 - Linear elements: 2-node bar, 3-node triangular, 4-node quadrilateral,
 4-node tetrahedral, 8-node hexahedral elements
 - Parabolic elements: 3-node bar, 6-node triangular, 8-node quadrilateral, 10-node tetrahedral, 20-node hexahedral elements
 - Cubic elements: 4-node bar, 9-node triangular, 12-node quadrilateral, 16-node tetrahedral, 32-node hexahedral elements
- Linear elements have two nodes along each edge, parabolic have three, and cubic have four.
- A higher-order element is more accurate than a lower-order element

- How to choose element size?
 - Critically important in obtaining good results
 - Preliminary analysis can help
- Is the size proper? (Error analysis and convergence analysis)
 - Mesh refinement improves solution accuracy.
 - How small is good enough?

Convergence rate

- Calculate the function of interest at three different meshes
- Let h₁, h₂, and h₃ be the sizes of elements, ordered by h₁ > h₂ > h₃
- Usually $h_1 = 2h_2 = 4h_3$
- The ratio in difference

$$\frac{\left\| u_{h_3} - u_{h_2} \right\|}{\left\| u_{h_3} - u_{h_1} \right\|} \approx \left(\frac{h_2}{h_1} \right)^{\alpha}$$

- Convergence rate α : indicates how fast the solution will converge to the exact one

- Applying displacement boundary conditions
 - FE model should be properly restrained so that it is not free to move in any direction even if there are no applied forces in that direction
 - Errors in BC will not disappear no matter how much you refine the model
 - Any unexplained high stress may be due to a wrong boundary condition

Not allowed to translate/rotate

Not allowed to translate

Example of error in BC

(a) Improper case

(b) Proper case

- Applying external forces
 - Forces are applied through a complex mechanism
 - It is often simplified when the interest region is far from the load application location
 - FE results near the load application location are not accurate due to approximation involved in the force
- Applying a concentrated force
 - Theoretically infinite stress (zero area)
 - Practically, all forces are distributed in a region
 - Concentrated force in FE is an idealization of distributed forces in a small region

- Note that the distributed forces are converted to the equivalent nodal forces.
- All applied forces must be converted to the equivalent nodal forces because the RHS of finite element matrix equations is the vector of nodal forces.

- St. Venant's principle
 - If the interest region is relatively far from the force location, the stress distribution may be assumed independent of the actual mode of application of the force

$$\sigma_{\min} = 0.668 \sigma_{\text{ave}}$$
 $\sigma_{\max} = 1.387 \sigma_{\text{ave}}$

$$\sigma_{min} = 0.198 \sigma_{ave}$$
 $\sigma_{max} = 2.575 \sigma_{ave}$

Applying a couple to a plane solid

(a) Beam element

- (b) Plane solid elements
- Applying a force through shaft

- Plate with a hole example
 - All nodes on the left edge are fixed in x-direction
 - node at the center of the left edge is fixed both in x- and y-direction
 - uniform pressure 600 psi, which is equivalent to the 300 lb, is applied on the right edge

POSTPROCESSING

- Review analysis results and evaluate the performance
 - Engineer must have a capability in interpreting FEA results
 - Requires knowledge and experience in mechanics
 - Engineer can check any discrepancy between the preliminary analysis results and the FEA results
- Deformed shape display
 - Strong tool to understand the mechanism of structural behavior
 - Can verify if the displacement and forces are correctly applied
 - Deformation is often magnified such that it can be visible

POSTPROCESSING cont.

Contour display

- Understand the distribution of the stress in the structure and identify the most critical locations
- Max stress 2,209 psi is 6% higher than that from preliminary analysis results (2,083 psi)
- Accurate stress values at Gauss integration points are extrapolated to nodes
- Refined model has 2,198 psi (.5% change from the initial model)

POSTPROCESSING cont.

Stress averaging

- Contour-plotting algorithms are based on nodal values
- Stress is discontinuous at nodes
- Extrapolated stresses are averaged at nodes -> Cause error
- Difference b/w actual and averages stress values are often used as criterion of accuracy

input data:

- geometry
- material
- boundary conditions

input data:

- error bound
- max. iteration steps

input data:

 evaluation locality for diagrams, colour plots, ...

- discretisation
- approximation
- parametrisation
- coupling:
 - ⇒ fields
 - ⇒ geometry
 - ⇒ circuits
 - ⇒ motion
 - ⇒ methods

- mesh adaptation
- num, method
- equation solver
- optimisation
- further modelling
 - ⇒ lumped parameter
- approximation of local field quantities
- field coupling