
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 4 :Embedded Operating System and Modelling

TOPIC 4.8 : POSIX Semaphores

1

26/03/202
4
26/03/2024 19ECT312/Embedded System Design / Dr.B.Sivasankari/Professor/ ECE/SNSCT

POSIX semaphores are synchronization primitives used in multi-threaded programming to

control access to shared resources among concurrent threads. Unlike mutexes, which allow

only one thread to access a resource at a time, semaphores can permit multiple threads to

access a resource simultaneously, up to a specified limit. Semaphores maintain an internal

counter that represents the number of available resources or permits, which threads acquire

or release using the sem_wait() and sem_post() functions, respectively.

This flexibility makes semaphores suitable for scenarios where multiple threads need

controlled access to shared resources or where synchronization needs to be more granular

than what mutexes offer. However, improper usage of semaphores can lead to deadlocks or

race conditions, so careful programming and understanding of concurrency principles are

essential when working with POSIX semaphores.

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

2/26

POSIX Semaphores

POSIX Semaphors API:

POSIX (Portable Operating System Interface) semaphores API provides a standardized

interface for controlling semaphores in Unix-like operating systems. Semaphores are

synchronization primitives used for inter-process communication and coordination.

In POSIX, semaphores are typically used to coordinate access to shared resources among

multiple processes or threads. They can be thought of as counters with associated atomic

operations for incrementing, decrementing, and testing their values.

1. sem_init: Initializes a semaphore with a specified initial value.
2. sem_destroy: Destroys a semaphore, releasing any associated resources.
3. sem_wait: Decrements the value of a semaphore. If the value is zero, the

function blocks until the semaphore becomes non-zero.
4. sem_post: Increments the value of a semaphore.
5. sem_getvalue: Retrieves the current value of a semaphore without modifying

it.

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

3/26

POSIX Semaphores

POSIX Semaphores

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

4/26

Advanced Semaphore Techniques:

Advanced semaphore techniques involve more sophisticated usage patterns and scenarios

beyond basic synchronization. Here are a few advanced techniques:

1. Multiple Semaphores for Resource Allocation: Instead of using a single semaphore to

control access to a shared resource, you can use multiple semaphores to manage

different aspects of resource allocation. For example, one semaphore can control read

access, another semaphore can control write access, and additional semaphores can

manage other types of access or resource states.

2. Counting Semaphores: While binary semaphores have only two states (0 and 1),

counting semaphores can have an initial count greater than 1. They are useful for

scenarios where multiple instances of a resource can be allocated simultaneously.

Threads or processes decrement the semaphore count when they acquire the resource

and increment it when they release it.

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

5/26

POSIX Semaphores

Semaphore Hierarchies: In complex systems, you may need to manage multiple resources

with different dependencies. Semaphore hierarchies involve organizing semaphores into a

hierarchical structure, where acquiring a higher-level semaphore automatically acquires all

lower-level semaphores. This technique helps prevent deadlocks and ensures consistent

resource allocation.

Priority Inheritance: Priority inversion can occur when a low-priority task holds a

semaphore needed by a high-priority task, causing the high-priority task to wait longer than

necessary. Priority inheritance is a technique where the priority of the low-priority task is

temporarily raised to that of the high-priority task while it holds the semaphore. This ensures

that the high-priority task can proceed without unnecessary delay.

Readers-Writers Problem: In scenarios where multiple threads need simultaneous read

access to a shared resource but write access must be exclusive, specialized semaphore

techniques like readers-writers locks can be employed. These locks allow multiple readers to

access the resource concurrently while ensuring exclusive access for writers.

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

6/26

POSIX Semaphores

Dynamic Semaphores: Instead of statically defining semaphores at compile time, dynamic

semaphores are created and destroyed at runtime as needed. This flexibility is useful in

scenarios where the number of resources or threads is not known in advance.

Semaphore Timeouts: Some semaphore implementations support timeouts, allowing

wait for a semaphore for a specified period before

are essential for preventing indefinite waits and

giving up. Timeout

handling exceptional

threads to

mechanisms

conditions.

POSIX Semaphores

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

7/26

Advantage:

Portability: Standardized interface

compatibility and easy migration of code.

Inter-Process Communication (IPC):

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

8/26

across Unix-like operating systems ensures

Facilitates synchronization and communication

between multiple processes.

Scalability: Adaptable for simple to complex synchronization needs in applications with

multiple processes or threads.

Flexibility: Offers binary and counting semaphore types for diverse synchronization

requirements.

Efficiency: Implemented with efficient algorithms and system calls, minimizing overhead in

memory and processing time.

Ease of Use: Simple API with intuitive functions for semaphore management simplifies

development and maintenance.

POSIX Semaphores

Limitations:

Limited Functionality: Lack advanced features like deadlock detection and priority

inheritance found in other synchronization primitives.

Complex Error Handling: Error handling can be intricate, requiring careful attention to

return values and error codes.

Kernel Dependency: Performance and behavior may vary based on the underlying

operating system and kernel version.

Resource Overhead: Each semaphore consumes system resources, potentially becoming

problematic in applications requiring many semaphores.

Portability Challenges: While aiming for portability, differences in behavior and

implementation across platforms may arise.

Risk of Deadlocks and Races: Improper use can lead to deadlocks or race conditions,

demanding careful programming to avoid.

26/03/2024 19ECT312/Embedded System Design /
Dr.B.Sivasankari/Professor/ ECE/SNSCT

9/26

POSIX Semaphores

Thank you

26/03/202426/03/2024

