
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC –
UGC with ‘A++’ Grade

DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 4 : EMBEDDED OPERATING SYSTEM AND MODELING

TOPIC 4.4 : MEMORY MANAGEMENT

1

Associative memory

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)
– If p is in associative register, get frame # out
– Otherwise get frame # from page table in memory

Page # Frame #

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Implementation of Page Table
• For each process, Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses
– One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast-lookup hardware
cache called associative memory or translation look-aside buffers (TLBs)

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time
– Replacement policies must be considered (LRU)
– Some entries can be wired down for permanent fast access

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each
process (PID) to provide address-space protection for that process
– Otherwise need to flush at every context switch

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Paging Hardware With TLB

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Effective Access Time
• Associative Lookup =  time unit

– Can be < 10% of memory access time

• Hit ratio = 
– Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to size of TLB

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

• Effective Access Time (EAT)
EAT = (100 + )  + (200 + )(1 – )

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
– EAT = 0.80 x 120 + 0.20 x 220 = 140ns

• Consider better hit ratio ->  = 98%,  = 20ns for TLB search, 100ns for
memory access
– EAT = 0.98 x 120 + 0.02 x 220 = 122ns

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Memory Protection
• Memory protection implemented by associating protection bit

with each frame to indicate if read-only or read-write access is
allowed
– Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
– “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page
– “invalid” indicates that the page is not in the process’ logical

address space
– Or use PTLR

• Any violations result in a trap to the kernel

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Valid (v) or Invalid (i)
Bit In A Page Table

14 bit address space (0 to 16383)
Page size 2KB

Process P1 uses only 0 to 10468

Internal fragmentation Use of PTLR (length)

Page 0

Page 1

Page 2

Page 3

P1

P2

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

• System with 40 users

– Use common text editor

• Text editor contains 150KB code 50KB data (page size 50KB)

– 8000KB!

• Shared code

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)

• Code never changes during execution

• Only one copy of the editor in the memory

• Total memory consumption

– 40*50+150=2150KB

Shared Pages Example

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Shared Pages Example

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Data share: example

int main()
{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|066
6);

ptr=shmat(shmid,NULL,0);
printf("shmid=%d ptr=%u\n",shmid, ptr);
strcpy(ptr,"hello");

i=shmdt((char*)ptr);

}

int main()
{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);
printf("shmid=%d ptr=%u\n",shmid, ptr);
printf("\nstr %s\n",ptr);

}

writer.c
reader .c

ptr
Shared
memory

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Structure of the Page Table
• Memory requirement for page table can get huge using

straight-forward methods
– Consider a 32-bit logical address space as on modern computers
– Page size of 4 KB (212)
– Page table would have 1 million entries 220 (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Hierarchical Page Tables

• Break up the page table into multiple
pages

• We then page the page table

• A simple technique is a two-level page
table

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Two-Level Page-Table Scheme

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Two-Level Paging Example
• A logical address (on 32-bit machine with 4KB page size) is

divided into:
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

• Since the page table is paged, the page number is further
divided into:
– a 10-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

page number page offset

p1 p2 d

10 10 12

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Two-Level Page-Table Scheme

p1

p2

d

Each divided page
table size=210

*4bytes=4KB
=Page size

Pentium II
5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Address-Translation Scheme

Pentium II
5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

64-bit Logical Address Space
• Even two-level paging scheme not sufficient
• If page size is 4 KB (212)

– Then page table has 252 entries
– If two level scheme, inner page tables could be 210 4-byte entries
– Address would look like

– Outer page table has 242 entries or 244 bytes
– One solution is to add a 2nd outer page table
– But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical memory location

outer page page offset

p1 p2 d

42 10 12

inner page

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Three-level Paging Scheme

SPARC (32 bits), Motorola 68030 support three and four level paging respectively

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Hashed Page Tables

• Common in virtual address spaces > 32 bits

• The page number is hashed into a page table
– This page table contains a chain of elements hashing to the same

location

• Each element contains (1) the page number (2) the value of the
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a
match
– If a match is found, the corresponding physical frame is extracted

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Hashed Page Table

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Inverted Page Table

• Rather than each process having a page table and
keeping track of all possible logical pages, track all
frames

• One entry for each frame

• Entry consists the page number stored in that frame,
with information about the process that owns that
page

• Decreases memory needed to store each page table,
– but increases time needed to search the table when a

page reference occurs
5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Inverted Page Table Architecture
64 bit UltraSPARC, PowerPC,

Address space ID

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation
• Memory-management scheme that supports user

view of memory

• A program is a collection of segments
– A segment is a logical unit such as:

main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays

Compiler generates the
segments
Loader assign the seg#

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

User’s View of a Program

User specifies each address
by two quantities
(a) Segment name
(b) Segment offset

Logical address contains the
tuple
<segment#, offset>

• Variable size segments without order
• Length=> purpose of the program
• Elements are identified by offset

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

• Long term scheduler finds and allocates memory for all segments of a program
• Variable size partition scheme

Logical
address
space

Logical address <segment-number, offset>

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Memory image

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Executable file and virtual address

Virtual address
space

a.out

Symbol table

Name address

SQR 0

SUM 4

0 Load 0
4 ADD 4

<CODE, 0> Load <ST,0>
<CODE, 2> ADD <ST,4>

Paging view

Segmentation view

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation Architecture

• Logical address consists of a two tuple:
<segment-number, offset>

• Segment table – maps two-dimensional logical
address to physical address;

• Each table entry has:
– base – contains the starting physical address where

the segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the
segment table’s location in memory

• Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR
5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Example of Segmentation

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation Hardware

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Example of Segmentation

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation Architecture

• Protection
• Protection bits associated with segments

– With each entry in segment table associate:
• validation bit = 0  illegal segment
• read/write/execute privileges

• Code sharing occurs at segment level
• Since segments vary in length, memory

allocation is a dynamic storage-allocation
problem
– Long term scheduler
– First fit, best fit etc

• Fragmentation
5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation with Paging

Key idea:

Segments are splitted into multiple
pages

Each page is loaded into frames in the
memory

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Segmentation with Paging

• Supports segmentation with paging
– Each segment can be 4 GB
– Up to 16 K segments per process
– <selector(16), offset (32)>
– Divided into two partitions

• First partition of up to 8 K segments are private to process (kept in
local descriptor table LDT)

• Second partition of up to 8K segments shared among all processes
(kept in global descriptor table GDT)

• CPU generates logical address (six Segment Reg.)
– Given to segmentation unit

• Which produces linear addresses

– Physical address 32 bits
– Linear address given to paging unit

• Which generates physical address in main memory
• Paging units form equivalent of MMU
• Pages sizes can be 4 KB

Intel 80386

IBM OS/2

S(13) G(1) P(2)

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Logical to Physical Address
Translation in Pentium

Page table=220

entries

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Example: The Intel Pentium

8 bytes Segment register

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Intel Pentium Segmentation

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

Pentium Paging Architecture

5/8/2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

