SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

INSTIOTNS

Accredited by NBA - AICTE and Accredited by NAAC -
UGC with ‘A++’ Grade

DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING

19eCT312 - EMBEDDED SYSTEM DESIGN
11l YEAR/ VI SEMESTER

UNIT 4 : EMBEDDED OPERATING SYSTEM AND MODELING

TOPIC 4.4 : MEMORY MANAGEMENT

item |
A
Compare with
all stored
addresses I—
Dat
simulataneouly key :
Y
— —
Address found
| {
Access location

202%

Associative Memory @i

* Associative memory — parallel search
Page # Frame #

e Address translation (p, d)
— If pis in associative register, get frame # out
— Otherwise get frame # from page table in memory

2‘”%

“Implementation of Page Tabl:*%

* For each process, Page table is kept in main memory

* Page-table base register (PTBR) points to the page table
* Page-table length register (PTLR) indicates size of the page table

* Inthis scheme every data/instruction access requires two memory accesses
— One for the page table and one for the data / instruction

* Thetwo memory access problem can be solved by the use of a special fast-lookup hardware
cache called associative memory or translation look-aside buffers (TLBs)

* TLBstypically small (64 to 1,024 entries)

* OnaTLB miss, value is loaded into the TLB for faster access next time
— Replacement policies must be considered (LRU)
— Some entries can be wired down for permanent fast access

* Some TLBs store address-space identifiers (ASIDs) in each TLB entry — uniquely identifies each
process (PID) to provide address-space protection for that process
— Otherwise need to flush at every context switch

202%

Paging Hardware With TLB &z

logical
address |
CPU > p d
page frame
number number
; TLB hit physical
> ' ' address
= f d =
TLB j
p
TLB miss
> f
- physical
memory
page table

202%

Effective Access Time &=

Associative Lookup = € time unit
— Can be < 10% of memory access time

Hit ratio = a

— Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to size of TLB

Consider o = 80%, € = 20ns for TLB search, 100ns for memory access

Effective Access Time (EAT)
EAT = (100 + €) o + (200 + €)(1 — o)

Consider a = 80%, € = 20ns for TLB search, 100ns for memory access
— EAT=0.80x120+0.20x 220 =140ns

Consider better hit ratio -> o =98%, € = 20ns for TLB search, 100ns for
memory access

— EAT=0.98 x 120+ 0.02 x 220 =122ns

202%

L Y-y

Memory Protection O’ S

* Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed

— Can also add more bits to indicate page execute-only, and so on

* Valid-invalid bit attached to each entry in the page table:

— “valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page

— “invalid” indicates that the page is not in the process’ logical
address space

— Or use PTLR

* Any violations result in a trap to the kernel

2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

—

Valid (v) or Invalid (i)
Bit In A Page Table =

INSTOIT

oz

Page size 2KB 0
Process P1 uses only O to 10468 ’
P1 2| page O
00000 frame number valid—invalid bit
1 page O \ / 3| page 1
0(2|vV
2 page 1 1 5 4| page 2
2|14 |v
3 age 2 5
£ 3 BV
page 3 48|V 6
5(9 (v
page 4 6 iGN 7| page 3
10,468 page 5 7 8| page 4
12,287 page table
/ 9| page 5
nal fragmentation Use of PTLR (length)
page n

202%

Shared Pages Example &%

e System with 40 users
— Use common text editor

e Text editor contains 150KB code 50KB data (page size 50KB)
— 8000KB!

e Shared code

— One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)

* Code never changes during execution
* Only one copy of the editor in the memory

* Total memory consumption
— 40*50+150=2150KB

202%

Shared Pages Example ¢

INSTOIT

nils
, ~
b ed i 0
3
ed?2 4 1| datai
6
ed 3 2| data3
1
data 1 page table 3 ed 1
for £, ed 1
process F’1 3 4 ed 2
ed 2
4 5
ed 3 8
7) ed3
data 2 page table
for P2 7 data 2
=e process P,
3 8
ed?2 4
9
ed 3 6
2 10
data 3 page table
for P3 11
process P,

202%

riter.c

202

int main()

{

int shmid,f key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT | 066
6);

ptr=shmat(shmid,NULL,0);
printf("shmid=%d ptr=%u\n",shmid, ptr);
cpy(ptr,"hello");
i=shmdt((char*)ptr);

Data share: example

reader .c

INSTOIT

oz

int main()

{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);

printf("shmid=%d ptr=%u\n",shmid, ptr);
printf("\nstr %s\n",ptr);

e

ptr

Shared
memory

Structure of the Page Tables**-

« Memory requirement for page table can get huge using
straight-forward methods
— Consider a 32-bit logical address space as on modern computers
— Page size of 4 KB (21?)

— Page table would have 1 million entries 220 (232 / 212)

— If each entry is 4 bytes -> 4 MB of physical address space /
memory for page table alone
* That amount of memory used to cost a lot
* Don’t want to allocate that contiguously in main memory

e Hierarchical Paging
 Hashed Page Tables

* I|nverted Page Tables

202%

& Hierarchical Page Tables

* Break up the page table into multiple
pages

* We then page the page table

* Asimple technique is a two-level page
table

202%

202

0

7

e

outer page
table

1]

(I
. 100 ==
500 N
° / .
100 500
708 [— .
\
. 708
9?9 N 900 :
900 />< :
page of 929
page table
page table :
memory

7 {logical address (on 32-bit machine with 4KB page s

— a page number consisting of 20 bits
— a page offset consisting of 12 bits

Since the page table is paged, the page number is further
divided into:

— a 10-bit page number
— a 10-bit page offset

Thus, a logical address is as follows:

page number page offset
P1 P2 d
10 10 12

where p, is an index into the outer page table, and p, is the
displacement within the page of the inner page table

202%

Each divided page

table size=210
*4bytes=4KB
=Page size

0

P1

N

Py—

tium |l

202

outer page
table

/

1]

e i
s 100
500 N
° /
{00 500
% :
708 ——
\
: 708
e
9?9 N\ 900
900 /><
page of 929
page table
page table

memory

y d

logical address
Pi | P2 | d
P1 {
=
Pz{
outer page d
table {
page of
page table
tium 1l

202%

I~
o Lo | &
. A
| N AR
e
-
E c

+2 64-bit Logical Address Space"=

o~

Even two-level paging scheme not sufficient
If page size is 4 KB (21?)
— Then page table has 2°2 entries

— If two level scheme, inner page tables could be 219 4-byte entries
— Address would look like

iInner page
outer page page offset
P1 P2 d
42 10 12

— OQOuter page table has 2%% entries or 244 bytes
— One solution is to add a 2" outer page table

But in the following example the 2"d outer page table is still 234
bytes in size

* And possibly 4 memory access to get to one physical memory location

202%

Three-level Paging Scheme

INSTIOTIZNE,

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage offset

P1 P> P3 d
32 10 10 12

ARC (32 bits), Motorola 68030 support three and four level paging respectively

202%

)

Hashed Page Tables

L Y-y

LB ITUTIONS

Common in virtual address spaces > 32 bits

The page number is hashed into a page table

— This page table contains a chain of elements hashing to the same
location

Each element contains (1) the page number (2) the value of the
mapped page frame (3) a pointer to the next element

Virtual page numbers are compared in this chain searching for a
match

— If a match is found, the corresponding physical frame is extracted

2024 Dr.B.Sivasankari/Professor/ECE/SNSCT

—

202

logical address

Hashed Page Table

P

v

physical
address

Lt T] oy

d

=
>

hash table

physical
memory

)

Inverted Page Table €

LB ITUTIONS

Rather than each process having a page table and
keeping track of all possible logical pages, track all
frames

* One entry for each frame

* Entry consists the page number stored in that framg,
with information about the process that owns that

page

* Decreases memory needed to store each page tablé,

— but increases time needed to search the table when a
page reference_occurs

202%

logical
address i

CPU (>{pid| p | d

search l

Address space ID |

physical
address

physical
memory

P>

Q.

g_(._J

—pid

©

page table

202%

e

Segmentation

* Memory-management scheme that supports usel
view of memory

 Aprogram is a collection of segments
— A segment is a logical unit such as:C | i
: i tes t
main program omplier generates e

segments
procedu re Loader assign the seg#
function
method
object

local variables, global variables
common block

stack

symbol table

arrays

202%

L Y-y

User’s View of a Program &%

User specifies each address
by two quantities

(a) Segment name

(b) Segment offset

subroutine

symbol
table

Logical address contains the
tuple
<segment#, offset>

Sqrt

main
program

* Variable size segments without order
_ * Length=> purpose of the program
logical-address * Elements are identified by offset

202%

L Y-y

LB ITUTIONS

1
4
2
3
Logical
address _
space user space physical memory space
Long term scheduler finds and allocates memory for all segments of a program
Variable size partition scheme

202%

Windows XP Memory Usage

Y /s

B rrrinots

Segment First Address Last Address Size
Code 401000x 403000x 002000x
~ 8 Kbytes
Static (Global) 403000x 703000x 300000x
Data ~ 3 megabytes
Heap 760000x 3A261000x 39800000x
~ 950 megabytes
Stack 22EF00x 16EF00x 1G0000x
~ 2 megabyte

202%

ITUTIONS

LINUX Memory Usage

Segment First Address Last Address Size
Code 8048400x 8049900x 001500x
~ 6 Kbytes
Static (Global) 8049A00x 8349A00 300000x
Data ~ 3 megabytes
Heap B7EE,BO00X 01CE,4000x B6000000x |
~ 3 gigabytes
Stack BFFB,7334x 29BA,91E0x 9640,0000x
~2.5gigabyte [

202%

Memory image &

LB Ty TIoNS

ER 11
I3 push
oG -
oYy 2J
&

3 ed £0 and s g void B{):

b8 00 00 00 00 5 2 void cf);

v b . 3 int main{)

g3 cU Ut) 4 {

83 c0 Of add S 5 printf{ *Heflo from mainin"};

L . 6 bl);
cl 8 04 shr $ 7}
cl e0 04 shl 3 8 /i This routine reads the opcodes from memory and prinis them out.
29 ¢4 T 9 wvoid b{

29 ¢ sub 0|
83 ec 0c sub 11 char *moving;
68 cO 84 04 08 &

-) 13 for { moving = {char *)(&main); moving < (char *){&c); moving++)
e8 1f ff ff ff 1 14 printf{ "Addr = O0x%x, Value = %:2xin", (int)(maoving), 255 & (int}*moving)
01 A n - 15]

83 c4 1 add .
-’ 16 wvoid cf)
e8 02 00 00 00 call 0x804839%b RA VA

18)

20 oF
o 2
ec

N NONAQ =1 . B
0x080483al c7 45

OvNRNARTHY

Uxugl4oibl

N NON ,—,-L;
wNRNAQ I/
uxUblU4o5D4

NeNQNAQIRT ARi00% . NE ha NN
0x080483b7 <b+28> 0f be 00

Ao

0x080483ba <b+31>: 25 £f 00 00 00

......

+@ecutable file and virtual addrzs

Symbol table

© Name address
SQR 0
ut
SUM 4 Virtual address
\/ space
Paging view
0 Load 0
4 ADD 4
Segmentation view
CODE, 0> Load <ST,0>
CODE, 2> ADD <ST,4>

Segmentation Architecture :

INSTIOTIZNE,

* Logical address consists of a two tuple:
<segment-number, offset>

* Segment table — maps two-dimensional logical
address to physical address;
e Each table entry has:

— base — contains the starting physical address where
the segments reside in memory

— limit — specifies the length of the segment

 Segment-table base register (STBR) points to the
segment table’s location in memory

* Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR

202%

Example of Segmentation

LUB T Tions

/ . \
subroutine stack
\ 1400 —
[\
f segment 3 \ segment 0
, ‘ 2400 ——
, symbol
segment 0 table
e limit | base |
segment 4 0| 1000 | 1400
Sqrt 9 3200
\ 1| 400 | 6300
\ main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700
t —t segment table 4300
segment 1 segment 2 segment 2
00
logical address space segment 4
5700
6300 - "
segment 1
6700°

physical memory

202

Segmentation Hardware

bs{
limit |base
segment
table
CPU M s | d
es
2 y
no
A/
trap: addressing error physical memory

202%

Example of Segmentation

LUB T Tions

/ . \
subroutine stack
\ 1400 —
[\
f segment 3 \ segment 0
, ‘ 2400 ——
, symbol
segment 0 table
e limit | base |
segment 4 0| 1000 | 1400
Sqrt 9 3200
\ 1| 400 | 6300
\ main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700
t —t segment table 4300
segment 1 segment 2 segment 2
00
logical address space segment 4
5700
6300 - "
segment 1
6700°

physical memory

202

Segmentation Architecture ¢

LB ITUTIONS

* Protection

* Protection bits associated with segments

— With each entry in segment table associate:
* validation bit = 0 = illegal segment
* read/write/execute privileges

* Code sharing occurs at segment level

* Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

— Long term scheduler
— First fit, best fit etc

* Fragmentation

202%

Segmentation with Paging :

BTN

Key idea:

Segments are splitted into multiple
pages

Each page is loaded into frames in the
memory

202%

N

Segmentation with Paging :

INSTOTZYR

e Supports segmentation with paging
— Each segment can be 4 GB
— Up to 16 K segments per process
— <selector(16), offset (32)>

— Divided into two partitions

* First partition of up to 8 K segments are private to process (kept in
local descriptor table LDT)

* Second partition of up to 8K segments shared among all processes
(kept in global descriptor table GDT)

* CPU generates logical address (six Segment Reg.)

— Given to segmentation unit
* Which produces linear addresses

— Physical address 32 bits

— Linear address given to paging unit Intel 80386
* Which generates physical address in main memory
* Paging units form equivalent of MMU IBM 0OS/2

* Pages sizes can be 4 KB

202%

Logical to Physical Address
Translation in Pentium

logical linear physical
address . Segmentanon address . pag|‘ng address g phy3|ca|
unit unit memory

CPU

Page table=22%0

entries
page number page offset
P P2 d
10 10 12

202%

Example: The Intel Pentiums

INSTOTIZTE;

logical address | selector | offset

—

descriptor table

< 8 bytes —>

Segment register

z" ~_\.
' segment descriplor s + |e—
i
h 4
linear address | directory page offset page frame
» physical address
page directory page table
— directory entry - page table entry
A A
page directory

base register

202%

Intel Pentium Segmentatior;

INSTIOTIZNE,

logical address | selector offset

Y
descriptor table

—> segment descriptor —(+ je—

¥
32-bit linear address

202%

Pentium Paging Architecture:

<P

)

INSTIOTIZTE;

(logical address)
. bage directory [page table | offset

31 22 21 l 12 11 l 0

page 4-KB

L table » page

page [l
directory

CR3 —» 5 4-MB

register page
T
. bage directory | offset |
31 22 21 0

202%

