SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

INSTIOTNS

Accredited by NBA - AICTE and Accredited by NAAC -
UGC with ‘A++’ Grade

DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING

19eCT312 - EMBEDDED SYSTEM DESIGN
11l YEAR/ VI SEMESTER

UNIT 4 : EMBEDDED OPERATING SYSTEM AND MODELING

TOPIC 4.3: MEMORY MANAGEMENT

Memory management &=

* We have seen how CPU can be shared by a
set of processes

— Improve system performance
— Process management

* Need to keep several process in memory
— Share memory

e Learn various techniques to manage
memory

— Hardware dependent

202%

~ ..

Memory management g

What are we going to learn?

* Basic Memory Management: logical vs.
physical address space, protection,
contiguous memory allocation, paging,
segmentation, segmentation with paging.

* Virtual Memory: background, demand
paging, performance, page replacement,
page replacement algorithms (FCFS, LRU),
allocation of frames, thrashing.

202%

Background 2

LB ITUTIONS

* Program must be brought (from disk)
Into memory

CPU

* Fetch-decode-execute cycle

* Memory unit only sees a stream of
addresses + read requests, or address +
data and write requests

* Sequence of memory addresses
generated by running program

202%

<@+ Logical vs. Physical Address Sp.¥i
e]

LUB T Tions

Logical address — generated by the CPU;
also referred to as virtual add| cru ‘

Physical address — address seen by the
memory unit

* Logical address space is the set of all
logical addresses generated by a
program

* Physical address space is the set of all
physical addresses generated by a

202%

Background

Multiple processes resides in memory
* Protection of memory required to ensure
correct operation |
operating
system
256000
Protect OS process
Protect user processes 300040 « 300040
process base
420940 . 120900
process limit
880000
1024000

Base and Limit Registers

* A pair of base and limit registers define
the logical address space
0
operating
system
256000
process
300040) 500040
process base
420940 ; 12000
limit
process
880000

2024 1024000, L T

base base + limit

address es es
CPU 4 y

v
Y
A
\ 4

no no

trap to operating system
monitor—addressing error memory

* OS loads the base & limit reg.
* Privileged instruction

202%

Ad d re S S B i n d i n g "‘14/-;7///"0//0,/:

* Process resides in main memory

* Associate each data element with memory
address

* Further, addresses represented in different
ways at different stages of a program’s life

— Source code addresses usually symbolic

— Compiled code addresses bind to relocatable
addresses
* ji.e. “14 bytes from beginning of this module”
— Linker or loader will bind relocatable addresses tp
absolute addresses
* j.e. 74014

202%

STOT)

Program
G
[‘source |
\ pragram |
e
compiler or | compile
assembler [time
Vo _\"\\
o / object |
CERTE \ modul
g U
II object | ~
'\modules/-'\A '
= linkage
editor
v '—
TR
prea— [load { load
v B \ module | | time
| -
_\\.‘7 : ///\ l
TS loader
',-d/ynamucab\l
loaded |
% system/ i
\ library >
<= "r-Inenory execution
dynamic binary L firma i
linking memory | ime)
image ‘ !

202%

o

-~ Binding of Instructions and Data t

AL, <
P e 217)

R S S -
TS M e ' ' | O ry INSTOTE
rahg

* Address binding of instructions and data to
memory addresses can happen at three
different stages
— Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

— Load time: Must generate relocatable code if
memory location is not known at compile time

— Execution time: If the process can be moved
during its execution from one memory segment to
another

* Binding delayed until run time

* Need hardware support for address maps (e.g., base an
limit registers)
202 i i

.. Logical vs. Physical Address
: %) S p a C e U J///Z//’JI/J‘

Logical address — generated by the CPU; also referred to

as virtual address BUITIRIIITED
ld.

Physical address — address seen by the memory unit

* Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes;

* |ogical (virtual) and physical addresses differ in
execution-time address-binding scheme

* Logical address space is the set of all logical
addresses generated by a program

* Physical address space is the set of all physical
addresses generated by a program

202%

Memory-Management
U n it (MMU) "’/;/-;7///'&//9,/:

 Hardware device that at run time maps virtual to physical address

* Many methods possible

e To start, consider simple scheme where the value in the relocation
register is added to every address generated by a user process at
the time it is sent to memory

— relocation register
— MS-DOS on Intel 80x86 used 4 relocation registers

e The user program deals with /logical addresses (0 to max); it never
sees the real physical addresses (R to R+max)
— Say the logical address 25

— Execution-time binding occurs when reference is made to location in
memory

— Logical address bound to physical addresses

202%

Dynamic relocation using a e
relocation register

ITUTIONS

14000 —>

relocation
register

14000
logical physical

address addraas
CPU + > memory
346 14346

MMU

code

202

Contiguous Allocation Y
LB rrunions
Multiple processes resides in memory
0
operating
system
256000
process
300040) 500080
process base
420940 i 120500
process ik
880000
1024000

202%

)

Contiguous Allocation ¢

LB ITUTIONS

* Main memory usually divided into two
partitions:

— Resident operating system, usually held in
low memory

— User processes then held in high memory

— Each process contained in single contiguous
section of memory

202%

Contiguous Allocation (Cont.:

LB ITUTIONS

 Multiple-partition allocation
— Divide memory into several Fixed size partition
— Each partition stores one process

— Degree of multiprogramming limited by number
of partitions

— |If a partition is free, load process from job queue
— MFT (IBM 0S/360)

202%

Contiguous Allocation (Cont.:

LB ITUTIONS

Multiple-partition allocation

oS

202

Variable partition scheme

Hole — block of available memory; holes of various size are
scattered throughout memory

Keeps a table of free memory

When a process arrives, it is allocated memory from a hole
large enough to accommodate it

Process exiting frees its partition, adjacent free partitions
combined

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS OS OS (ON
process 5 process 5 process 5 process 5
process 9 process 9
process 8 process 10
process 2 process 2 process 2 process 2

Dynamic Storage-Allocation
P rO b I e m :"/;/V;}’///‘;J//’J//J

How to satisfy a request of size n from a list of free
holes?

Dynamic storage allocation problem
* First-fit: Allocate the first hole that is big enough

» Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

— Produces the smallest leftover hole

* Worst-fit: Allocate the largest hole; must also search entire list
— Produces the largest leftover hole

202%

Hardware Support for Relocation
and Limit Registers

BTN

* Relocation registers used to protect user processes from each other, and from
changing operating-system code and data
* Relocation register contains value of smallest physical address
* Limit register contains range of logical addresses — each logical address
must be less than the limit register
e Context switch
* MMU maps logical address dynamically

limit relocation
register register

logical physical
address yes address

CPU <« » +
o

no

h 4

memory

trap: addressing error

202%

Fragmentation I

BTN

* Processes loaded and removed from memory
— Memory is broken into little pieces

* External Fragmentation — total memory space
exists to satisfy a request, but it is not
contiguous

* First fit analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation

— 1/3 may be unusable -> 50-percent rule

202%

Fragmentation (Cont.) &%

* Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory
together in one large block

— Compaction is possible only if relocation is
dynamic, and is done at execution time

* Change relocation reg.
— Cost

* Internal Fragmentation — allocated memory
may be slightly larger than requested memory;
this size difference is memory internal to a
partition, but not being used

202%

202

1500

igo

500
600

800

1200

os

Jes J

Jer 2

Jols 2

S

ico

soo
eeo

lLooQ

L1200

2100

ol)

vl 2

b3

b 2

1900
2100 2100
e —

oo

500
600

OS

Jes)

1500
JeNy 4
500
180 JeNs F
2100
R

Paging S

WU TIONS

* Physical address space of a process can be noncontiguous;
— process allocates physical memory whenever the latter is available

* Divide physical memory into fixed-sized blocks called frames
— Size is power of 2, between 512 bytes and 16 Mbytes

* Divide logical memory into blocks of same size called pages

— To run a program of size N pages, need to find N free frames and

load program
ey
N

page 0
page 1

. . . A page 2
* Backing store likewise split into pages | |pages
New process
T o

 Set up a page table to translate logical to physical addresses

* System keeps track of all free frames

202%

NSO

frame
number
page0 | — 0
o1 —
page 1 112 1| page 0
2 IS
age 2 2
i 3|7
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
page table to translate logical to physical
addresses 7| page 3
physical
memory

* Address generated by CPU is divided into:
— Page number (p) — used as an index into a page table
* which contains base address of each page in physical memory

— Page offset (d) — offset within a page

* combined with base address to define the physical memory address
that is sent to the memory unit

offset l
page
page number page offset
P d
m-n n

— For given logical address space 2™ and page size 2"

202%

Paging Hardware 3

STOI

) 7,
71‘
logical physical Y,
address address fO000 ... 0000
) 4
CPU > p | d f d >
 §
M1 s w1171
p —
— f
physical
page table Hi=tory

202%

Paging Example

. 0] a 0
Logical 1] b Physical address:
address = 3 | d - (5*4+0)=20
16 5 | f o5 j
Page ° 1 7 Logical address 3
age | e ogical address
size=4 o |] i n (0*4+3)
Physical K b
y 1 r; page table 1P Physical address:
memory= 13| n (5*4+0)=23
32 15| p
logical memory 16 .
Logical address 4
User’s view (1*4+0)
20 & .
. Physical address:
: d (6*4+0)=24
4 e
Run time address gf; .
binding — h Logical address 13
(3*4+1)
Physical address:
physical memory (2 *4+1)
n=2 and m=4 32-byte
memory and 4-byte

201%

e

° >
P a g I n g IWSTIOTETE,

e External fragmentation??
e (Calculating internal fragmentation

— Page size = 2,048 bytes

— Process size = 72,766 bytes

— 35 pages + 1,086 bytes

— Internal fragmentation of 2,048 - 1,086 = 962 bytes
* So small frame sizes desirable?

— But increases the page table size

— Poor disk I/O

— Page sizes growing over time
» Solaris supports two page sizes — 8 KB and 4 MB

e User’s view and physical memory now very different
— user view=> process contains in single contiguous memory spaceg|

By implementation process can only access its own memory
— protection

202%

Free Frames

INSTIOTIZTE;

free-frame list free-frame list
14 15
13 13 13 [page 1
18
20 14 14 |page O
15
(T T 15 AT T 15
T S
page O 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process new process
1 18 & 18 [page 2
19 o[ia 19
Use’s view 113 .
20 o[18 20 [page g SYStem's piew
3(20
21 new-process page table 21
Before allocation After allocation

202%

Implementation of Page 3
Table

* For each process, Page table is kept in main memory

* Page-table base register (PTBR) points to the page table

* Page-table length register (PTLR) indicates size of the
page table

* In this scheme every data/instruction access requires
two memory accesses

— One for the page table and one for the data / instruction

* The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

202%

