RFID Overview

Radio **F**requency **ID**entification

- Tag wirelessly sends bits of data when it is triggered by a reader
- Power source not required for passive tags... a defining benefit
- Superior capabilities to barcode:
 - Non Line of Sight
 - Hi-speed, multiple reads
 - Can read and write to tags
 - Unit specific ID

Four main frequencies:

	Frequency	Distance	Example Application
LF	125khz	Few cm	Auto- Immobilizer
HF	13.56Mhz	1m	Building Access
UHF	900Mhz	~7m	Supply Chain
µwave	2.4Ghz	10m	Traffic Toll

Focus of this presentation is on UHF

Presentation Objectives:

Explain technical principles behind RFID
Provide overview of RFID technology
Discuss:

Forces driving the adoption of RFID
Challenges RFID deployment must overcome
The future

RFID History

- First Bar code patents 1930s
- First use of RFID device 2nd world war Brittan used RFID-like technology for Identify- Friend or Foe
- Harry Stockman October 1948 Paper Communication by means of reflected power (The proceedings of the Institute of Radio Engineers)
- First RFID Patent 1973
- Auto-ID center founded at MIT 1999
 - Standardization effort taken over by EPC Global (Electronic Product Code)
- Current thrust primarily driven by Wal-Mart and DoD
 - Automate Distribution:
 - Reduce cost (man power, shipping mistakes)
 - Increase sales (keep shelves full)
 - DoD Total Asset Visibility Initiative

Basic Tag Operational Principles

- Near field (LF, HF): inductive coupling of tag to magnetic field circulating around antenna (like a transformer)
 - Varying magnetic flux induces current in tag. Modulate tag load to communicate with reader
 - field energy decreases proportionally to 1/R³ (to first order)
- Far field (UHF, microwave): backscatter.
 - Modulate back scatter by changing antenna impedance
 - Field energy decreases proportionally to 1/R
- Boundry between near and far field: R = wavelength/2 pi so, once have reached far field, lower frequencies will have lost significantly more energy than high frequencies
- Absorption by non-conductive materials significant problem for microwave frequencies

Source of data: "Introduction to RFID" CAENRFID an IIT Corporation

Types of Tags

- Passive

 Operational power scavenged from reader radiated power

Semi-passive
Operational power provided by battery

- Active

Operational power provided by battery - transmitter built into tag

Electronic Product Code

EPC Data Standard-96 bit

Header - Tag version number EPC Manager - Manufacturer ID Object class - Manufacturer's product ID Serial Number - Unit ID

With 96 bit code, 268 million companies can each categorize 16 million different products where each product category contains up to 687 billion individual units

Note: 64 bit versions also defined, 256 bit version under definition

Generic Tag Architecture (Highly Simplified)

Tag Details

	LF	HF	UHF	Microwave
Freq. Range	125 - 134KHz	13.56 MHz	866 - 915MHz	2.45 - 5.8 GHz
Read Range	10 cm	1M	2-7 M	1M
Market share	74%	17%	6%	3%
Coupling	Magnetic	Magnetic	Electro magnetic	Electro magnetic
Existing standards	11784/85, 14223	18000-3.1, 15693,14443 A, B, and C	EPC C0, C1, C1G2, 18000-6	18000-4
Application	Smart Card, Ticketing, animal tagging, Access, Laundry	Small item management, supply chain, Anti-theft, library, transportation	Transportation vehicle ID, Access/Security, large item management, supply chain	Transportation vehicle ID (road toll), Access/Security, large item management, supply chain

Class 0 Signaling

EPC : Reader-tag Communication

- Reader to tag communication (AM)
 - Output RF power is modulated between full and fractional power
 - 50% duty cycle is binary '1'
 - 88% duty cycle is binary '0'
 - Picture at left shows '01' Tag to reader communication
- Tag responds by FM
 - 2 cycles of modulation in one data bin is a binary '1'
 - 1 cycle of modulation is a binary '0'
 - · Picture at left shows '1011'

Default Class 0 Reader Communication Sequence

Tag Singulation Process read individual tag from group of all tags in range of reader

Basic process:

- **1.** All tags within range of reader backscatter their MSB to the reader.
- 2. Reader responds with either a 1 or a 0.
- 3. If tag bit equals reader bit, tag backscatters the next bit in it's code . If instead, tag bit does not equal reader bit, tag goes mute for remainder of singulation.
- 4. Process continues until reader has completely read a single tag.
- **5.** Reader conducts consecutive singulations until all tags in its range are read.
- 6. Reader can interrupt the singulation process to send commands to a single tag, a subset of all tags in range, or globally to all tags in range.

UHF Reader Standards

GEO / Country	Frequency Band	
North America	900 – 930 MHz	
EMEA	866 – 868 MHz	
Korea	908.5 – 914 MHz	
Australia	918 – 926 MHz	
China (PRC)	TBD	
Japan	TBD	

Transmitter	North America	
Output Freq. Band	902 – 928 Mhz	
Output Power	4 watts EIRP	
TX Channel step	500Khz	
Hop frequency	2.5 to 20 times per second	
TX Channels	902.75, 903.25,, 927.25Mhz	
Modulation	Typically ASK 20% to 100% modulation depth	

Note: EIRP = 1.64X ERP (Effective Radiated Power)

Reader Implementation Challenges

- Reader must deliver enough power from RF field to power the tag
- Reader must discriminate backscatter modulation in presence of carrier at same frequency
- 70db magnitude difference between transmitted and received signals
- Interference between readers
- Hugh volume of tag data readers need to filter data before releasing to enterprise network

Possible UHF Reader RF Processor

Possible Digital Back End

Possible Reader Software Stack

Traditional RFID Market Segments

Auto Immobilizers

Automated Vehicle Id

Isolated systems
Simple reads
Slow growth

Animal Tracking

Access Control