
Interrupts

 Interrupts are the events that temporarily suspend the main program,

pass the control to the external sources and execute their task. It then

passes the control to the main program where it had left off. 8051 has

5 interrupt signals, i.e. INT0, TFO, INT1, TF1, RI/TI.

8051 Microcontroller is a widely used embedded system, that incorporates a
robust interrupt system which are important for external communications and
real-time applications. Interrupts are the important feature of a
microcontroller which enables the microcontroller to respond to the external
events and requests, which enhances the multitasking abilities of the
microcontroller. An interrupt is an external or internal event/command that
interrupts the normal processing of an event and informs the microcontroller
that a device needs its service. Whenever a device needs its service, the
device sends an interrupt signal to the microcontroller to send a notification.
Upon receiving the interrupt signal, the microcontroller stops its existing
program and serves the external device request. The program which is
associated with the interrupt is known as interrupt Service Routine (IRS) or
interrupt handler.
The 8051 features two main types of interrupts, i.e. Hardware interrupts and
software interrupts. The hardware interrupts are triggered by external signal
such as peripheral events or external devices. The microcontroller can be
configured to respond to specific events, allowing for efficient event-driven
programming. Whereas, the Software interrupts, are initiated by specific
instructions in the program code. They provide a mechanism for the
programmer to force the microcontroller to interrupt its normal execution and
execute a predefined routine.
The address of the corresponding interrupt service routine (ISR) is included
in the suitable interrupt vector associated with every interrupt source in the
8051. The microcontroller automatically maintains its state on interrupt,
fetches the interrupt vector’s ISR address, and executes the ISR’s operation.
Once the ISR is finished, the microcontroller restarts the task which has
been interrupted.

Interrupt structure of 8051 Microcontroller
All of the interrupts are disabled by “RESET” thus software is required to
enable all of these interrupts. If any one of these five interrupts or all five are
activated, the relevant interrupt flags are set. The priority, which is managed
by the IP interrupt priority register, determines which of these interrupts can
be set or cleared bit by bit in a specific function register that is Interrupt
Enabled (IE).

 Two SFRs controls the function of interrupts in 8051 microcontrollers. IE is
Responsible for disable/enable the function and IP is Responsible for priority
assignment: The priority list offers 3 levels of interrupt priority: Reset: When
a reset request arrives, everything is stopped and the microcontroller
restarts. Reset can be used to disable the interrupt priority 1. Interrupt
priority 0 can be disabled by both Reset and interrupt.

Some of the registers used in this microcontroller are :

 IE (Interrupt Enable) Register
 IP (Interrupt Priority) Register
 TCON (Timer Control) Register

IE (Interrupt Enable) Register
Interrupts can be enabled and disabled using IE Register. It is a register in
the 8051 microcontroller that controls interrupt prioritization and triggering. It
includes many bits, such as:
EA-Global Interrupt Enable/Disable – When it is set it enables all interrupt,
if cleared disables all interrupts

 0- Disables all interrupt requests
 1- Enables all interrupt requests
ES (Serial Communication Interrupt Enable)- This bit enables or disables
the interrupt for serial communication.
 1- Interrupt is enabled by UART system
 0-Interrupt cannot be generated by UART system
ET0- Bit enables or disables timer 0 interrupt.
 1-Timer 0 is enables an interrupt
 0-Interrupt cannot be generated by the timer 0
ET1– Bit enables or disables timer 1 interrupt.
 1- Interrupt is enabled by timer 1
 0-Interrupt is disabled by timer 1
EX0 and EX1 (External Interrupt 0 and External Interrupt 1 Enable)
 These bits control the interrupts from external devices.
 EX0 – bit enables or disables external 0 interrupt: 0 – change of the INT1

pin logic state cannot generate an interrupt and 1 – enables an external
interrupt on the pin INT1 state change.

 EX1 – bit enables or disables external 1 interrupt: 0 – change of the pin
INT0 logic state cannot generate an interrupt and 1 – enables an external
interrupt on the pin INT0 state change.

IT0 and IT1 (External Interrupt 0 and External Interrupt 1 Type)– These
bits determine the type of trigger for external interrupts (level or edge-
triggered).

IE (Interrupt Enable) Register

IP (Interrupt Priority) Register
One cannot predict when one may receive an interrupt request. If multiple
interrupts are enabled, it can happen that a request for another interrupt is
made while the first one is ongoing. There is a priority list that tells the
microcontroller what to do in order to determine whether to respond to a new
interrupt request or to carry on with existing operations. The microcontroller

restarts once everything stops in response to a reset request. Only Reset
has the ability to disable Interrupt priority 1. Both Reset and interrupt priority
1 have the ability to disable interrupt priority 0. The interrupt priority register,
or IP Register, indicates which of the current interrupt sources is more
significant than other. The program’s start typically defines the interrupt
priority. An interrupt will be immediately paused and given preference over
any other interrupt if the one with greater priority comes while the other is still
in progress. Whenever two interrupt requests that have different priorities
occurs simultaneously, the higher priority interrupt is handled first. If two
interrupt requests with the same priority level arise one after the other, the
subsequent request needs to wait until the entire process is accomplished.
Bit0 (PX0)- External0 interrupt priority bit
 0- Sets low priority to external 0 interrupt
 1- Sets high priority to external 0 interrupt
Bit1 (PT0)- Timer 0 interrupt priority bit
 0- Assigns low priority to Timer0 interrupt
 1- Assigns high priority to Timer0 interrupt
Bit2 (PX1)- External1 interrupt priority bit
 0- Sets low priority to external1 interrupt
 1- Sets high priority to external1 interrupt
Bit3 (PT1)- Timer1 interrupt priority bit
 0- Sets low priority to timer1 interrupt
 1- Sets high priority to timer1 interrupt
Bit4 (PS)- Serial Input priority bit
 0- Assigns low priority to serial interrupt
 1- Assigns high priority to serial interrupt
Bit 5,6 & 7- These bits are called as the Reserved bits.

IP (Interrupt Priority) Register

TCON (Timer Control) Register

The interruptions that the microcontroller interfaces with (external) devices
are known as external interrupts. They are received by the controller’s INTx
pins. These may be triggered by edges or levels. Interrupt is enabled for a
low at the INTx pin when it is level triggered, and for a high to low transition
at the INTx pin when it is edge triggered. The TCON register determines
whether the triggering is edge or level trigger. The INTx pin for a level trigger
interrupt needs to remain low until the interrupt begins and needs to go back
to high prior to the interrupt terminating. An interrupt won’t be produced if the
low at the INTx pin rises to a high value before the ISR begins. Additionally,
the interrupt will be created once more if the INTx pin is low even after the
ISR has ended. The level trigger interrupt (low) at the INTx pin must
therefore be four machine cycles long, neither longer nor shorter than this.
 IE0- External interrupt 0 edge flag- When an external interrupt edge is

detected, hardware sets it. Cleared by the device upon processing the
interrupt.

 IE1- External interrupt 1 edge flag-Set by hardware when external
interrupt edge is detected. Cleared by hardware when the interrupt is
processed.

 TF0- Timer 0 overflow flag-This bit is set whenever timer 0 overflows
and is processed by the hardware.

 TF1- Timer 1 overflow flag – This bit is set whenever timer 1 overflows
and is processed by the hardware.

https://www.geeksforgeeks.org/interrupts/

 TR0- Timer 0 Run Control- Set this bit to start Timer 0 and clear it to
stop the timer. This is important because the timer needs to be running for
it to generate interrupts.

 TR1 Timer 1 Run Control – Similar to TR0, this bit controls the running
state of Timer 1.

 IT0- Interrupt 0 type control bit- Set/cleared by the device or software to
indicate falling edge/low-level triggered external interrupts.

 IT1- Interrupt 1 type control bit- Set/cleared by the device or software to
indicate falling edge/low-level triggered external interrupts. Whenever the
IT0 and IT1 bits are set, the external interrupts 0 and 1 edge-triggered
respectively. These bits are cleared by default, which causes the external
interrupt to be level triggered.

TCON (TIMER CONTROL) REGISTER

Types of 8051 Microcontroller Interrupts
8051 Microcontroller suffers five different types of interrupts that hampers the
main program execution. These five types of interrupts are:
 Timer 0 overflow interrupt- TF0
 Timer 1 overflow interrupt-TF1
 External hardware interrupt- INT0
 External hardware interrupt- INT1
 Serial communication interrupt- RI/TI

External Hardware Interrupt- (INT0 & INT1)
The 8051 microcontrollers are able to respond to external events through
its external interrupts, INT0 and INT1.
External Interrupt 0 (INT0)
 It is connected to the 8051’s pin PORT3.2.
 An interrupt request is issued when this pin transitions from low to high in

response to an external signal.
 It is possible to program the microcontroller to carry out a particular

Interrupt Service Routine (ISR) in response to this interrupt.

 Set the IE (Interrupt Enable) bit for INT0 in the TCON register and
configure the IT0 (Interrupt Type 0) bit in the TCON register
corresponding to the desired triggering condition (edge or level-triggered)
in order to enable and configure INT0.

External Interrupt 1 (INT1)
 It is connected to the 8051’s pin PORT3.3
 When that particular pin encounters a low-to-high transitions, INT1, like

INT0, creates an interrupt request.
 By configuring the IT1 (Interrupt Type 1) bit in the TCON register and

setting the IE bit for INT1 in the TCON register, one can enable and
configure INT1.

 A specific ISR can be executed by the microcontroller in response to
INT1.

Timer Interrupts (Timer0 and Timer1)
Timer 0 and Timer 1 are hardware timers with internal timer interrupts
featured in the 8051 microcontrollers. In microcontroller applications, these
timers are used to measure time intervals and generate precise delays. The
interrupt system of the microcontroller enables it to react quickly to outside
events. Interrupts for Timer 0 and Timer 1 are produced when their
respective timers exceed their limit. The microcontroller will run the interrupt
service routine (ISR) for that timer if the related interrupt is enabled, and the
associated interrupt flag is set upon overflow.
Timer0 Interrupt
 Since Timer 0 is an 8-bit timer, its count range is 0 to 255.
 There are two modes of operation for it, 13-bit and 16-bit. It employs the

TH0 (Timer 0 High) and TL0 (Timer 0 Low) registers in 13-bit mode and
only the TH0 register in 16-bit mode.

 It is possible to set timer 0 to interrupt when it approaches zero instead of
staying at its maximum value. The microcontroller can perform a
particular interrupt service routine (ISR) in response to the interrupt
request that this overflow generates.

Timer1 Interrupt
 Timer 1 is a 16-bit timer with a counting range of 0 to 65,535.
 It can operate in 16- or 8-bit mode. It employs the TL1 (Timer 1 Low) and

TH1 (Timer 1 High) registers in 8-bit mode and only the TH1 register in
16-bit mode.

 Timer 1 can be set up to produce an interrupt when it overflows, just like
Timer 0. This interruption may cause a certain ISR to be executed.

Serial Communication Interrupts (UART)
UART (Universal Asynchronous Receiver/Transmitter) is a serial
communication protocol used with 8051 microcontrollers. Data is sent over a

single cable, bit by bit, in serial transmission. In this sense, “interrupts” refers
to the processes that enable the microcontroller to react quickly to external
events.
Addressing UART communication with the 8051’s interrupts:
 Initialization of UART- Set the data format, baud rate, and enable the

UART module by configuring the UART registers.
 Interrupt Enable– Depending on the operation you wish to interrupt for,

enable the UART’s transmit interrupt (TI) or receive interrupt (RI).
 ISR (interrupt service routine)- To handle the interrupt, write an ISR.

The ISR in UART communication normally verifies whether the transmit
buffer is ready (TI) or whether data has been received (RI).

 Clearing the Flag- To recognize the interrupt and get ready for the next
one, in the ISR, clear the associated interrupt flag (RI or TI).

Interrupt Vector Table
The addresses of different interrupt service routines (ISRs) are stored in a
table called the Interrupt Vector Table (IVT) in an 8051 microcontroller. It is a
vital aspect of the interrupt handling mechanism in the microcontroller. When
an interrupt occurs the interrupt specific ISR is executed by jumping the
program counter to the corresponding address in the IVT. There are memory
areas set aside specifically for the IVT in the 8051 microprocessors. Every
interrupt has a specific place in the IVT, and the addresses kept there point
to the program memory’s associated ISR’s start. By guiding the program flow
to the proper place, the IVT enables the microcontroller to respond to
external events like hardware interrupts or external signals quickly and
effectively.

Interrupt Flag
Interrupt Vector
Address

Reset – 0000H

INT0 (External Interrupt
0)

IE0 0003H

Timer0 TF0 000BH

INT1 (External Interrupt
1)

IE1 0013H

https://www.geeksforgeeks.org/introduction-of-microprocessor/

Interrupt Flag
Interrupt Vector
Address

Timer 1 TF1 001BH

Serial Interrupt TI/RI 0023H

Applications of 8051 Interrupts
 In real-time systems, interrupts are essential for speedy responses to

external occurrences. Due to its ability to swap tasks fast through
interrupts, the 8051 is a good choice for applications that need exact
timing.

 Interrupts serve in the control of incoming data in communication
applications, assuring timely transmission or rapid handling of received
information.

 In embedded systems, 8051 interrupts are frequently utilized for activities
like sensor interfacing, where the microcontroller must react quickly to
environmental changes.

 Interruptions assist in ensuring timely data sampling and processing in
situations when data must be obtained from sensors or external devices.

 By enabling instantaneous reactions to sensor triggers or alarm
situations, interrupts in security systems can ensure prompt alerting and
suitable responses.

Solved Examples on 8051 Microcontroller Interrupts
1. Write an 8051 program to enable external interrupts’0’ and ‘1’,
configure it to receive edge triggered interrupt request and keep
waiting for the interrupt.
ORG 0x00; Start of program memory
MOV P1, #00H; Initialize Port 1
MOV IE, #10001011B; Enable external interrupts (EX0 and EX1)
MOV IT0, #0; Configure INT0 for edge-triggered interrupt
MOV IT1, #0; Configure INT1 for edge-triggered interrupt
MAIN:
NOP; No operation, just wait for interrupts
SJMP MAIN; Jump back to main loop
ORG 0x03; Interrupt Vector for External Interrupt 0 (INT0)
INT0_ISR:
; Your interrupt service routine code for INT0 here
RETI; Return from interrupt
ORG 0x0B; Interrupt Vector for External Interrupt 1 (INT1)

https://www.geeksforgeeks.org/sensors-in-internet-of-thingsiot/

INT1_ISR:
; Your interrupt service routine code for INT1 here
RETI; Return from interrupt
2. Write a program to flash LEDs connected at port 2 With delay of 10
msec. Read data from PORT O continuously and send it to PORT 1 .Use
timer 0 in mode 1 with interrupt.
ORG 0000H
LJMP MAIN
ORG 000BH
CLR TCON.4
CLR TCON.5
CPL A
MOV P2,A
MOV THO, # ODB
MOV TLO,# OFF
SETB TCON.4
RETI
MAIN: MOV TMOD,#01h
MOV THO, # ODB
MOV TLO,# OFF
MOV IE, # 82H
MOV A,#00H
MOV P2,#00H
SETB TCON.4
BACK: MOV A, PO
MOV P1,A
SJMP BACK
Advantages of 8051 Microcontroller Interrupt
 By quickly resolving problems, interrupts can be used for error detection

and handling, improving the system’s robustness and reliability.
 The 8051’s capability to operate in a low-power mode and wake up only in

response to an interrupt helps battery-powered applications operate more
energy-efficiently.

 Interrupts make it possible to break up large, complicated processes into
smaller, more manageable subroutines, which improves the readability
and organization of the code.

 By allowing the microcontroller to be interrupted in response to a
predetermined event, the interrupt system minimizes CPU overhead and
boosts overall system performance. This eliminates the requirement for
constant input polling.

 A few 8051 variations enable interrupt priority levels, which give important
tasks the upper hand over less important ones and improve
responsiveness and control of the system.

Disadvantages of 8051 Microcontroller Interrupt
 The number of interrupt sources that can be supported is limited by the

8051 microcontroller’s two external interrupt pins (INT0 and INT1).
 The 8051’s interrupt priority cannot be dynamically adjusted; it is fixed.

This could render handling several interruption sources with different
priorities difficult.

 Variations in the microcontroller’s response time to an interrupt might
affect real-time applications where reliable and consistent response times
are essential.

 Careful programming is necessary to prevent unexpected behavior while
handling interrupts, particularly when working with nested interruptions or
crucial portions.

 Since the 8051 lacks vectored interrupts, unlike some other modern
microcontrollers, it is required to manually examine interrupt flags in order
to identify the interrupt’s source.

Conclusion
The 8051 Microcontroller has the ability to handle interrupts both external as
well as internal interrupts. This helps the microcontroller to interface with the
external peripherals devices and can be used for real time applications.
These interrupts increase the productivity of the microcontroller and can be
used for various purposes. interrupts are essential to the operation of 8051
microcontrollers because they give the processor a way to react to outside
events quickly and without the need for continuous polling. They improve
system efficiency by enabling the microcontroller to manage several tasks at
once. Because of their capacity to manage a variety of interrupt sources and
prioritize tasks, 8051 microcontrollers provide an adaptable platform for
embedded systems, which makes them ideal for applications that demand
multitasking and real-time responsiveness. Comprehending and executing
interrupt-driven programming efficiently is imperative to fully utilize 8051
microcontrollers in diverse electronic uses.

	Interrupt structure of 8051 Microcontroller
	IE (Interrupt Enable) Register
	IP (Interrupt Priority) Register
	TCON (Timer Control) Register
	Types of 8051 Microcontroller Interrupts
	External Hardware Interrupt- (INT0 & INT1)
	Timer Interrupts (Timer0 and Timer1)
	Serial Communication Interrupts (UART)

	Interrupt Vector Table
	Applications of 8051 Interrupts
	Solved Examples on 8051 Microcontroller Interrupts
	Advantages of 8051 Microcontroller Interrupt
	Disadvantages of 8051 Microcontroller Interrupt
	Conclusion

