

### **SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35**

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 19ECB212 – DIGITAL SIGNAL PROCESSING**

II YEAR/ IV SEMESTER

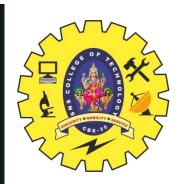
**UNIT 3 – FIR FILTER DESIGN** 

**TOPIC** – Linear Phase FIR Filter

LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

6-May-24





### FIR FILTERS

- **Finite Impulse Response (FIR) Systems:** Unit sample response (or) Impulse response h(n) has finite no. of terms
- Finite Impulse Response (FIR) Filters: The filters designed by considering all the finite samples of impulse response
- The specification of a digital filter will be desired frequency response  $H_d(e^{j\omega})$ . The desired impulse response  $h_d(n)$  of the digital filter can be obtained by taking inverse Fourier transform  $H_d(e^{j\omega})$ . The  $h_d(n)$  will be an infinite duration discrete time signal defined for all values of n in the range -  $\infty$  to + $\infty$





### FIR FILTERS

- The transfer function H(z) of the digital filter is obtained by taking Z transform of impulse response. Since h<sub>d</sub>(n) is an infinite duration signal, the transfer function obtained from h<sub>d</sub>(n) will have infinite terms, which cannot be realized or implemented in a digital system
- Therefore. Finite number of samples  $h_d(n)$  are selected to form the impulse response, h(n) of the filter.
- The transfer function H(z) is obtained by taking Z transform of finite sample impulse response h(n). The filters designed by using finite samples of impulse response are called Finite Impulse Response Filters.





#### ADVANTAGES & DISADVANTAGES OF FIR FILTERS

- Advantages: FIR filters with exactly linear phase can be easily designed
- Efficient realizations of FIR filter exist as both recursive and nonrecursive structures
- FIR filters realized nonrecursively, i.e., by direct convolution are always stable
- Roundoff noise, which is inherent in realizations with finite precision arithmetic can easily be made small for nonrecursive realization of FIR filters
- **Disadvantages:** The duration of the impulse response should be large to adequately approximate sharp cutoff filter. Hence a large amount of processing is required to realize such filters when realized via slow convolution
- The delay of linear phase FIR filters need not always be an integer no. of samples. This non-integral delay can lead to problems in signal processing applications





### **STEPS IN DESIGNING FIR FILTER**

- Choose an ideal (desired) frequency response,  $H_d(e^{j\omega})$
- Take inverse Fourier transform of  $H_d(e^{j\omega})$  to get  $h_d(n)$  or sample  $H_d(e^{j\omega})$  at finite number of points (N – Point) to get H(k)
- If  $h_d(n)$  is determined then convert the infinite duration  $h_d(n)$  to a finite duration h(n) or if H(k) is determined then take N-Point inverse DFT to get h(n).
- Take Z transform of h(n) to get H(z), Where H(z)-transfer function of the digital filter
- Choose a suitable structure and realize the filter
- Verify the design, In order to verify the design, determine the actual frequency response H( $e^{j\omega}$ ) of the filter, by letting  $z = e^{j\omega}$  in H(z) and sketch the magnitude response |  $H(e^{j\omega})$  |





### LTI SYSTEM AS FREQUENCY SELECTIVE FILTERS

The frequency response  $H(e^{j\omega})$  is a complex quantity,

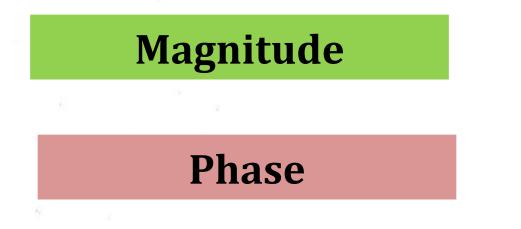
$$H(e^{j\omega}) = \left| H(e^{j\omega}) \right| \angle H(e^{j\omega}) = C$$
  
where,  $|H(e^{j\omega})| = C$ 

$$\angle H(e^{j\omega}) = -\alpha\omega$$

Magnitude of frequency response is constant and its phase is a linear function of frequency. If the phase function of frequency response of a filter is linear function of frequency, then the filter is called Linear phase filter







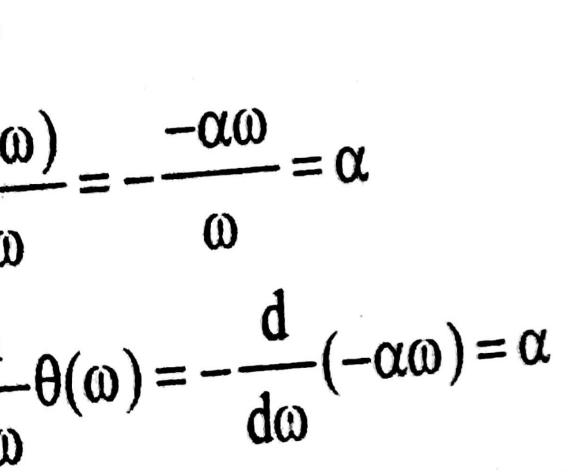


#### LTI SÝSTEM &S FREQUENCÝ SELECTIVE FILTERS

In order to examine the linear and nonlinear phase characteristics, two delay functions are defined and they are **Phase delay and Group delay** 

Let,  $\angle H(e^{j\omega}) = \theta(\omega)$  $\theta(\omega)$ θ(ω) Phase delay,  $\tau_p$ 6 Group delay,  $\tau_g = -\frac{d}{1} \theta(\omega)$ 







#### IDEAL FREQUENCY RESPONSE OF LINEAR PHASE FIR FILTERS

- filters are classified according to their frequency The response characteristics. The ideal (desired) frequency response  $H_d(e^{j\omega})$  of four major types of filters. They are Low pass, High pass, Band pass and Band stop filters
- The H<sub>d</sub>( $e^{j\omega}$ ) is periodic, with periodicity of **0 to 2\pi** (or  $-\pi$  to  $\pi$ ). Also any analog frequency  $\Omega$  will map (or can be converted ) to frequency of digital system  $\omega$  within the range **0 to 2\pi** (or  $-\pi$  to  $\pi$ )
- Hence the frequency response of digital filters are defined in the interval **0 to 2\pi** (or  $-\pi$  to  $\pi$ )





#### IDE&L FREQUENCY RESPONSE OF LINE&R PHASE FIR FILTERS

$$H_d(e^{j\omega}) = 0$$
;

$$= C e^{-j\alpha\omega};$$

**Ideal Frequency Response** of High pass Filter  $H_d(e^{j\omega})$ 

**Ideal Frequency Response** 

of Low pass Filter  $H_d(e^{j\omega})$ 

LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

 $H_d(e^{j\omega})$ 

6-May-24



tor for ω, for  $+\omega_c \omega$ for  $-\omega_c$  to  $= +\omega_c to +\pi$ for ω

#### IDEAL FREQUENCY RESPONSE OF LINEAR PHASE FIR FILTERS



0

| deal Frequency Response                                                          | $H_d(e^{j\omega})$                | = 0                       | ;  | fo |
|----------------------------------------------------------------------------------|-----------------------------------|---------------------------|----|----|
| of Band pass Filter H <sub>d</sub> (e <sup>j</sup> <sup>\varphi</sup> )          |                                   | $= C e^{-j\alpha\omega}$  | ;  | f  |
|                                                                                  |                                   | = 0                       | ;  | f  |
|                                                                                  |                                   | $= C e^{-j\alpha\omega}$  | ;  | f  |
|                                                                                  |                                   | = 0                       | ;  | f  |
| deal Frequency Response<br>of Band stop Filter H <sub>d</sub> (e <sup>jω</sup> ) | H <sub>d</sub> (e <sup>jω</sup> ) | $= C e^{-j\alpha \alpha}$ | •; |    |
|                                                                                  |                                   | =0                        | ;  | f  |
|                                                                                  |                                   | $= C e^{-j\alpha\alpha}$  | ;  | 1  |
|                                                                                  |                                   | =0                        | ;  | 1  |
|                                                                                  |                                   |                           |    |    |

 $= C e^{-j\alpha\omega}$ : for  $\omega = +\omega_{c2}$  to  $+\pi$ 

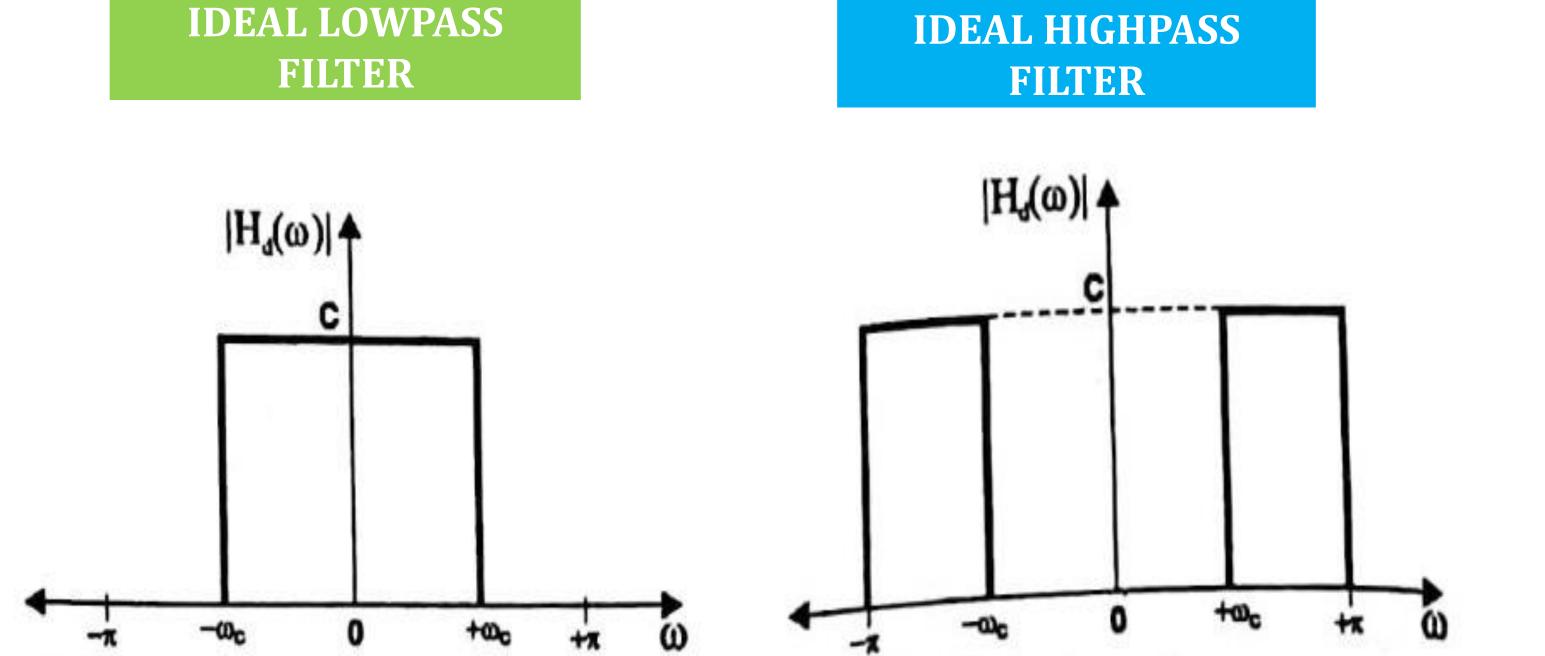
LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT



- for  $\omega = -\pi$  to  $-\omega_{c2}$
- for  $\omega = -\omega_{c2}$  to  $-\omega_{c1}$
- for  $\omega = -\omega_{c1}$  to  $+\omega_{c1}$
- for  $\omega = +\omega_{c1}$  to  $+\omega_{c2}$
- for  $\omega = +\omega_{c2}$  to  $+\pi$
- for  $\omega = -\pi$  to  $-\omega_{c2}$
- for  $\omega = -\omega_{c2}$  to  $-\omega_{c1}$
- for  $\omega = -\omega_{c1}$  to  $+\omega_{c1}$
- for  $\omega = +\omega_{c1}$  to  $+\omega_{c2}$



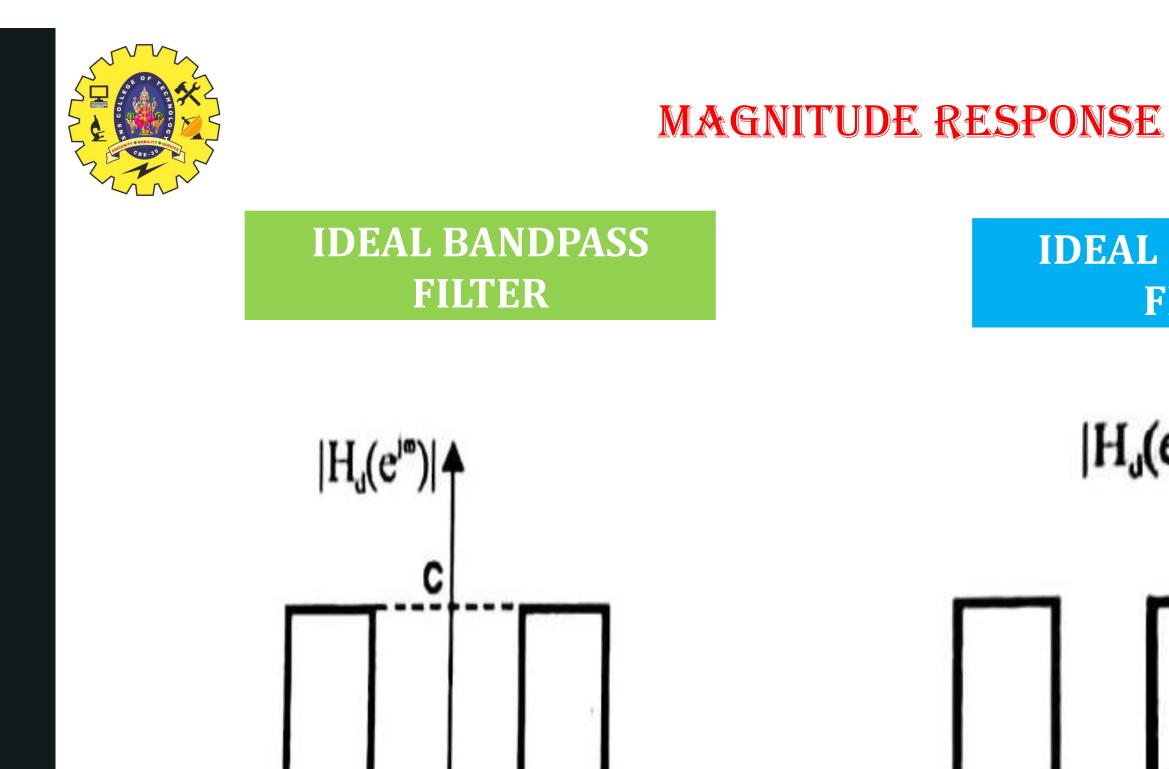
### M&GNITUDE RESPONSE



LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT







+wc1 +wc2

-Wa

-WC1

0

LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

ω

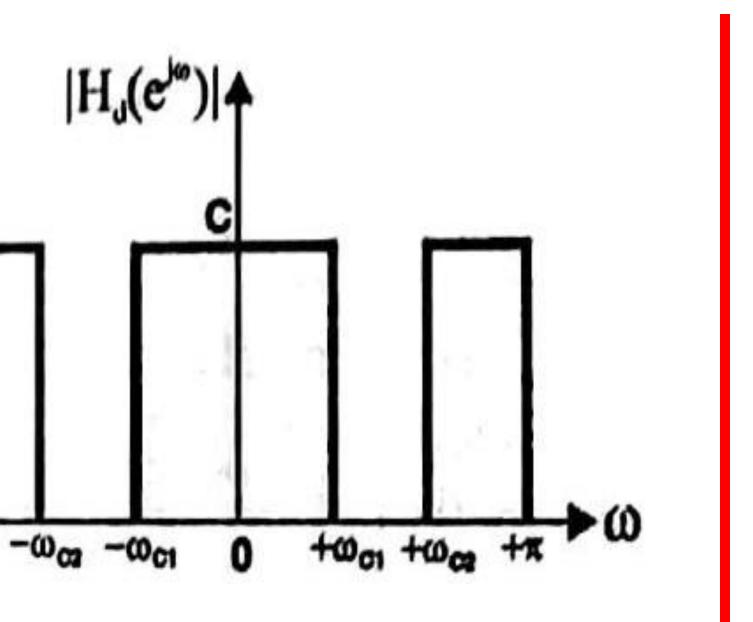
 $-\pi$ 

+π



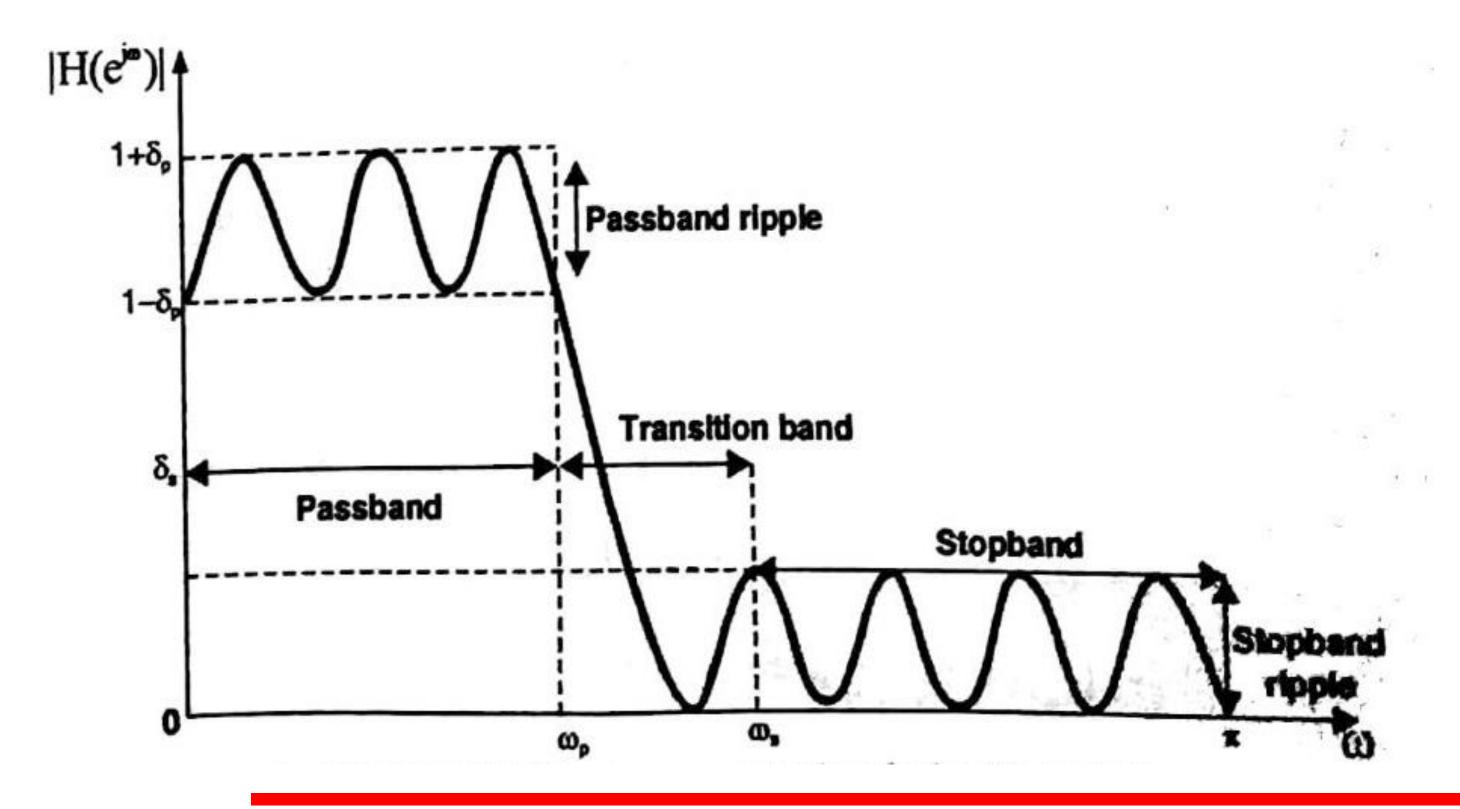


### **IDEAL BANDSTOP FILTER**





#### M&GNITUDE RESPONSE OF & PR&CTIC&L LOWPASS FILTER



LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT





13/18



#### M&GNITUDE RESPONSE OF & PR&CTIC&L LOWP&SS FILTER

- The transition of the frequency response from pass band to stop band defines the transition band or transition region of the filter
- The pass band edge frequency  $\omega_p$  defines the edge of the pass band, while the stop band edge frequency  $\omega_s$  denotes the beginning of the stop band
- $\delta_p$  Pass band ripple
- $\delta_s$  Stop band ripple
- $\omega_p$  Pass band edge frequency
- $\omega_s$  Stop band edge frequency





#### CHARACTERISTICS OF FIR FILTERS WITH LINEAR PHASE

- Let h(n) be the causal finite duration sequence defined over the interval 0 lacksquare $\leq n \leq N-1$  and the samples of h(n) be real
- The Fourier transform of h(n) is  $\bullet$

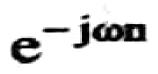
$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n)$$

Which is periodic in frequency with period  $2\pi$ 

$$\therefore H(e^{j\omega}) = H(e^{j\omega+2\pi m}); \text{ for } m =$$







15/18



#### CHARACTERISTICS OF FIR FILTERS WITH LINEAR PHASE

Since  $H(e^{j\omega})$  is complex it can be expressed as **Amplitude function**, Magnitude function and Phase function  $H(e^{j\omega}) = \pm |H(e^{j\omega})| e^{j \angle H(e^{j\omega})} = A(\omega) e^{j\theta(\omega)}$ 

where, 
$$A(\omega) = \pm |H(e^{j\omega})|$$

$$\theta(\omega) = \angle H(e^{j\omega})$$

$$|H(e^{j\omega})| = Magnitud$$

When h(n) is real, the magnitude function is a symmetric function and the phase  $\therefore |\mathbf{H}(\mathbf{e}^{\mathbf{j}\omega})| = |\mathbf{H}(-\mathbf{e}^{\mathbf{j}\omega})|$ function is an asymmetric function

 $|\theta(\omega)| = - |\theta(-\omega)|$ 



- ) = Amplitude function
- = Phase function
- le function



### ASSESSMENT

- 1. Define FIR Systems.
- 2. Mention the advantages and disadvantages of FIR Filters.
- 3. Based on frequency response the filters are classified into four basic types. They are ------ and ------
- 4. What are the steps involved in designing FIR Filter?
- 5. In order to examine the linear and nonlinear phase characteristics, two delay functions are ------ and ------
- 6. The Fourier transform of h(n) is ------







# THANK YOU

6-May-24

LINEAR PHASE FIR FILTER/19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT





18/18