

SNS College of Technology, Coimbatore-35. (Autonomous)
B.E/B.Tech Internal Assessment - I

Academic Year 2023-2024 (Even)
Fourth Semester

Electronics and Communication Engineering 19ECB212 - Digital Signal Processing

Time: $\mathbf{1}^{1 / 2}$ Hours
Maximum Marks: 50
Answer All Questions

$$
\text { PART - A (5 x } 2=10 \text { Marks })
$$

						CO	Blooms
1.	Build the 2 Point DIT FFT.					CO1	App
2.	If $X(K)=\{5,3\}$. Find $x(n)$ of the given sequence.					CO1	Rem
3.	Compare Overlap save and Overlap add method.					CO1	Und
4.	Define IIR Filter and mention its features.					CO2	Rem
5.	Define Bilinear transformation.					CO2	Rem
PART - (2×13 = 26 Marks) (1 x 14 = 14 Marks)							
						CO	Blooms
6.	(a)	State and prove	the prop	f DFT	13	CO1	Und
	(b)	(i) Find the Cir $X_{1}(n)=\{2,1,2,1\}$ (ii) Find the D	cular co $1\}$ and T of th	n of the given sequences ,1,2,3,4\} ce if $\mathbf{x}(\mathbf{n})=\mathbf{1 , 0} \leq \mathbf{n} \leq \mathbf{3}$	7 6	CO1	Rem
7.	(a)	Analyze Butte the following $\begin{aligned} & \mathrm{T}=0.1 \mathrm{Sec} \\ & 0.6 \leq\left\|\begin{array}{l} \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \\ \\ \\ H\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mid \end{array}\right\| \end{aligned}$	worth onstrain $\begin{aligned} & \leq 1.0 \\ & \leq 0.1 \\ & \hline \end{aligned}$	R low pass filter satisfying Bilinear transformation. $\begin{aligned} & \text {; for } 0 \leq \omega \leq 0.35 \pi \\ & \text {; for } 0.7 \pi \leq \omega \leq \pi \end{aligned}$	13	CO2	Ana

	(or)		76		
	(b)	(i) Find $\mathrm{H}(\mathrm{z})$ using impulse invariant technique for the analog filter design. $\mathrm{H}(\mathrm{s})=10 /\left(\mathrm{S}^{2}+3 \mathrm{~S}+2\right)(\mathbf{T}=\mathbf{0 . 1} \mathbf{s e c})$ (ii) Find $\mathrm{H}(\mathrm{z})$ using bilinear transformation when $\mathrm{H}(\mathrm{s})=2 /(\mathrm{S}+1)(\mathrm{S}+2), \mathbf{T}=\mathbf{1} \mathbf{~ S e c}$		CO 2	Rem
8.	(a)	Examine Discrete Fourier Transform for the given sequence $x(n)=\{0,1,2,3,4,5,6,7\}$ using radix-2 DIT - FFT algorithm	14	CO1	Ana
		(or)			
	(b)	(i) Apply circular convolution by using Overlap Save Method if $x(n)=\{1,2,3,4,4,3,2,1\}$ and $h(n)=\{-1,1\}$ (ii) Solve DFT for the given sequence $\mathrm{x}(\mathrm{n})=\{2,1,2,1\}$ using radix-2 DIF - FFT algorithm	7 7	CO1	App App

Abbreviations:
CO - Course Outcomes; Rem- Remembering; Und - Understanding; App - Applying;
Ana - Analyzing; E - Evaluating; C- Creating

