
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION 
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

UNIT 3 –PROGRAMMING CONCEPTS AND EMBEDDED 

PROGRAMMING IN C++

TOPIC 3 - Embedded Programming in C++

1

5/4/2024

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 2/17

Introduction to Embedded Systems

Definition: Embedded systems are specialized computing systems designed to perform specific 
functions within a larger system or device\

Characteristics:
Constrained resources (memory, processing power)
Real-time operation
Interaction with physical environment (sensors, actuators)

Importance and applications:
Automotive (engine control units, infotainment systems)
Consumer electronics (smartphones, wearable devices)
Industrial automation (PLCs, robotics)

Challenges:
Optimization for resource-constrained environments
Real-time performance requirements
Hardware-software co-design considerations

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 3/17

Overview of C++ for Embedded Systems

Why C++?

Abstraction: Provides high-level constructs without sacrificing performance.

Modularity: Supports object-oriented programming, facilitating code reuse and maintenance.

Efficiency: Allows fine-grained control over memory and hardware resources

.

Key features:

Classes and objects

Inheritance and polymorphism

Templates and generic programming

Standard Template Library (STL)

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 4/17

Basic Concepts in Embedded C++

Data types and memory representation:

Fundamental types (int, float, char)

Fixed-width integer types (stdint.h)

Understanding memory layout (stack, heap, data, text segments)

Pointers and memory management:

Pointer arithmetic

Dynamic memory allocation (new/delete, malloc/free)

Control flow constructs:

if-else statements

Loops (for, while, do-while)

Functions:

Modular programming

Passing arguments by value vs. reference

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 5/17

Low-Level Programming in C++

Memory-mapped I/O:

Accessing hardware peripherals directly through memory addresses

Using volatile keyword to prevent compiler optimizations

Bit manipulation techniques:

Setting, clearing, and toggling bits

Bitwise operators (&, |, ^, <<, >>)

Accessing hardware peripherals:

Register definitions and bitfields

Using hardware abstraction layers (HALs)

•

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 6/17

Interrupt Handling in Embedded C++

Understanding interrupts:

Introduction to interrupt-driven programming

Interrupt vectors and priority levels

Writing interrupt service routines (ISRs) in C++:

Marking ISRs with appropriate attributes (e.g., attribute((interrupt)))

Handling interrupt context and latency

Techniques for managing interrupts:

Interrupt nesting and prioritization

Deferred interrupt handling

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT



5/4/2024 7/17

Embedded C++ and Object-Oriented 
Programming

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT

Encapsulation, inheritance, and polymorphism:

Designing classes to represent hardware components (e.g., 

sensors, actuators)

Inheritance hierarchies for peripheral drivers

Polymorphic behavior for abstracting hardware interfaces

Using classes and objects:

Instantiation and initialization

Access specifiers (public, private, protected)

Member functions and data members



5/4/2024 8/17

Memory Management in Embedded C++

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT

Static vs. dynamic memory allocation:

Stack vs. heap memory

Stack usage for local variables and function calls

Heap allocation for dynamic data structures (e.g., linked lists, 

trees)

Memory footprint optimization techniques:

Minimizing global variables

Static analysis tools for memory usage profiling

Custom memory allocators for resource-constrained systems



5/4/2024 9/17

Real-Time Operating Systems (RTOS) with C++

Introduction to RTOS for embedded systems:

Task scheduling and prioritization

Inter-task communication and synchronization

Using C++ features with RTOS APIs:

Thread creation and management

Synchronization primitives (semaphores, mutexes)

Task scheduling and synchronization in RTOS-based embedded applications:

Priority inversion and priority inheritance

Deadlock avoidance and detection

19ECT312/Emb.Sys
/Dr.B.Sivasankari/Professor/ECE/S

NSCT


