
CSE/SNSCT Page 1 

 

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 

(An Autonomous Institution) 

16CS306 and Composing Mobile Apps     

UNIT 5 

 
 
Junit for Android 
 
The following code shows a JUnit test using the JUnit 5 version. This test assumes that the 

MyClass class exists and has a multiply(int, int) method. 

 
 
import static org.junit.jupiter.api.Assertions.assertEquals; 
 

 

import org.junit.jupiter.api.Test; 
 

 

public class MyTests { 
 

 

@Test 
 

public void multiplicationOfZeroIntegersShouldReturnZero() { 

MyClass tester = new MyClass(); // MyClass is tested 

 
 

// assert statements 
 

assertEquals(0, tester.multiply(10, 0), "10 x 0 must be 0"); 

assertEquals(0, tester.multiply(0, 10), "0 x 10 must be 0"); 

assertEquals(0, tester.multiply(0, 0), "0 x 0 must be 0"); 
 

} 
 
} 
 

 

Junit naming conventions 
 
There are several potential naming conventions for JUnit tests. A widely-used solution for 

classes is to use the "Test" suffix at the end of test classes names. 
 
As a general rule, a test name should explain what the test does. If that is done correctly, 

reading the actual implementation can be avoided. 
 



CSE/SNSCT Page 2 

 

One possible convention is to use the "should" in the test method name. For example, 

"ordersShouldBeCreated" or "menuShouldGetActive". This gives a hint what should happen 

if the test method is executed. 



CSE/SNSCT Page 3 

 

Run your test from command line 
 

The org.junit.runner.JUnitCore class provides the runClasses() method. This method allows 

you to run one or several tests classes. As a return parameter you receive an object of the 

type org.junit.runner.Result. This object can be used to retrieve information about the tests. 

 

 

The following class demonstrates how to run the MyClassTest. This class executes your test 

class and write potential failures to the console. 

 

 

package de.vogella.junit.first; 
 

import org.junit.runner.JUnitCore; 
 

import org.junit.runner.Result; 
 

import org.junit.runner.notification.Failure; 
 

public class MyTestRunner { 
 

public static void main(String[] args) { 
 

Result result = JUnitCore.runClasses(MyClassTest.class); 

for (Failure failure : result.getFailures()) { 

System.out.println(failure.toString()); 
 

} 
 

} 
 

} 
 

Robotium 
 

ANDROID WITH ROBOTIUM 
 

Robotium is a test framework created to make it easy to write powerful and robust 

automatic black-box test cases for Android applications so test developers don’t need any 

further information about the Android app’s structure or implemented classes. All they 

need is the name of the main class and the path that links to it. With the support of 

Robotium, test case developers can write function, system and acceptance test scenarios, 

spanning multiple Android activities. This blog post is meant to serve as a mini-tutorial on 

setting up Robotium as an automated acceptance testing framework for Android 

applications. The post will summarize all the info related to setting up & writing tests in 

Robotium. 
 
Robotium officially supports Android 1.6 and up. Robotium has full support for Activities, 

Dialogs, Toasts, Menus and Context Menus. 



CSE/SNSCT Page 4 

 

Robotium provides the following benefits: 
 

 

You can develop powerful test cases, with minimal knowledge of the application under test. 
 

The framework handles multiple Android activities automatically. 
 

Minimal time needed to write solid test cases. 
 

Readability of test cases is greatly improved, compared to standard instrumentation tests. 
 

Test cases are more robust due to the run-time binding to GUI components. 
 

Blazing fast test case execution. 
 

Integrates smoothly with Maven or Ant to run tests as part of continuous integration 
 

With Robotium it is possible to run test cases on applications that are pre-installed 

http://code.google.com/p/robotium/wiki/RobotiumForPreInstalledApps 
 

Robotium can be integrated into continuous integration and can get code coverage for 

Robotium tests.(http://code.google.com/p/robotium/wiki/QuestionsAndAnswers) 
 
CREATING AND RUNNING TESTCASES: 
 

STEP 1: ROBOTIUM.JAR 
 

STEP 2: CREATE JAVA CLASS 
 

STEP 3: RUN TEST CASE 
 

 

Eclipse: After all test cases are created right click on the test project Run As >> Run As 
 

Android JUnit Test. 
 

ADB: 
 

Use adb to Install the application apk 
 

>> adb install ApplicationToTest.apk 

Use adb to install the test project apk: 
 
>> Adb install ExampleTesting.apk 


