
CSE/SNSCT Page 1

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

16CS306 and Composing Mobile Apps

UNIT 4

Android NDK Native APIs

The Android NDK provides a set of native headers and shared library files that has gradually

increased with successive releases of new Android API levels. This page explains these headers

and files, and maps them to specific Android API levels.

Using native APIs

There are two basic steps to enable your app to use the libraries that the NDK provides:

1. Include in your code the headers associated with the libraries you wish to use.

2. Tell the build system that your native module needs to link against the libraries at load time.

 If you are using ndk-build: Add the native library to your LOCAL_LDLIBS variable in

your Android.mkfile. For example, to link against /system/lib/libfoo.so, add the following line:

3. LOCAL_LDLIBS := -lfoo

To list multiple libraries, use a space as a delimiter. For more information about using

theLOCAL_LDLIBS variable, see Android.mk.

 If you are using CMake: Follow the instructions in Add C and C++ Code to Your Project.

For all API levels, the build system automatically links the standard C and C++ libraries. You do

not need to explicitly include them when setting LOCAL_LDLIBS.

The NDK often provides new headers and libraries for new Android releases. For a list of the

native APIs introduced by Android release version, see Table 1 below. These files reside in your

NDK installation root, under sysroot/usr/include.

The following table shows the correspondence between NDK-supported API levels and Android

platform releases. For more information about Android API levels, see What is API Level?

Table 1. Summary of key native API support introduced by Android version.

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
https://developer.android.com/ndk/guides/ndk-build.html
https://developer.android.com/ndk/guides/android_mk.html
https://developer.android.com/ndk/guides/android_mk.html
https://developer.android.com/ndk/guides/cmake.html#add-ndk-api
https://developer.android.com/studio/projects/add-native-code.html
https://developer.android.com/ndk/guides/stable_apis#table1
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

CSE/SNSCT Page 2

Native API highlights

Android API level 3

C library

The standard C library headers are available through their usual names, such

as <stdlib.h> and <stdio.h>.

Note that on Android, unlike Linux, there are no separate pthread and rt libraries. That

functionality is included in libc. The math library remains separate in libm, but is automatically

added by the compiler.

Dynamic linker library

You can access the Android dynamic linker's dlopen(3) and dlsym(3) functionality. You must

also link against libdl. For example:

LOCAL_LDLIBS := -ldl

C++ library

C++17 support is available. For more information on C++ library support, see C++ Library

Support.

Android-specific log support

<android/log.h> contains various functions that an app can use to send log messages to logcat

from native code. For more information about these definitions, see the logging documentation.

Typically you should write your own wrapper macros to access this functionality. If you wish to

log, link against liblog. For example:

LOCAL_LDLIBS := -llog

ZLib compression library

https://developer.android.com/ndk/guides/cpp-support.html
https://developer.android.com/ndk/guides/cpp-support.html
https://developer.android.com/ndk/reference/group/logging

CSE/SNSCT Page 3

You can use the Zlib compression library by including zlib.h and zconf.h. You must also link

your native module against /system/lib/libz.so by including the following line in

your Android.mk file:

LOCAL_LDLIBS := -lz

Android API level 4

The NDK provides the following APIs for developing native code that runs on Android 1.6

system images and above.

OpenGL ES 1.x Library

The standard OpenGL ES headers <GLES/gl.h> and <GLES/glext.h> contain the declarations

necessary for performing OpenGL ES 1.x rendering calls from native code.

To use these headers, link your native module to /system/lib/libGLESv1_CM.so by including the

following line in your Android.mk file:

LOCAL_LDLIBS := -lGLESv1_CM

All Android-based devices support OpenGL ES 1.0, because Android provides an Open GL 1.0-

capable software renderer that can be used on devices without GPUs.

Only Android devices that have the necessary GPU fully support OpenGL ES 1.1. An app can

query the OpenGL ES version string and extension string to determine whether the current

device supports the features it needs. For information on how to perform this query, see the

description of glGetString() in the OpenGL specification.

Additionally, you must put a <uses-feature> tag in your manifest file to indicate the version

of OpenGL ES that your application requires.

The EGL APIs are only available starting from API level 9. You can, however, use the VM to

perform some of the operations that you would get from those APIS. These operations include

surface creation and flipping. For an example of how to use GLSurfaceView, see Introducing

GLSurfaceView.

The san-angeles sample application provides an example of how to perform these operations,

rendering each frame in native code. This sample is a small Android port of the excellent San

Angeles Observation demo program.

http://www.zlib.net/manual.html
https://developer.android.com/ndk/guides/android_mk.html
https://developer.android.com/ndk/guides/android_mk.html
http://www.khronos.org/opengles/sdk/1.1/docs/man/glGetString.xml
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/graphics/opengl.html#manifest
https://developer.android.com/ndk/guides/stable_apis#egl
http://android-developers.blogspot.com/2009/04/introducing-glsurfaceview.html
http://android-developers.blogspot.com/2009/04/introducing-glsurfaceview.html
http://jet.ro/visuals/san-angeles-observation/
http://jet.ro/visuals/san-angeles-observation/

CSE/SNSCT Page 4

Android API level 5

The NDK provides the following APIs for developing native code that runs on Android 2.0

system images and above.

OpenGL ES 2.0 library:

The standard OpenGL ES 2.0 headers <GLES2/gl2.h> and <GLES2/gl2ext.h> contain the

declarations needed for performing OpenGL ES 2.0 rendering calls from native code. These

rendering calls provide the ability to use the GLSL language to define and use vertex and

fragment shaders.

To use OpenGL ES 2.0, link your native module to /system/lib/libGLESv2.so by including the

following line in your Android.mk file:

LOCAL_LDLIBS := -lGLESv2

Not all devices support OpenGL ES 2.0. An app can query the OpenGL ES version string and

extension string to determine whether the current device supports the features it needs. For

information on how to perform this query, see the description of glGetString() in the OpenGL

specification.

Additionally, you must put a <uses-feature> tag in your manifest file to indicate which version of

OpenGL ES your application requires. For more information about the OpenGL ES settings

for <uses-feature>, see OpenGL ES.

The hello-gl2 sample application provies a basic example of how to use OpenGL ES 2.0 with the

NDK.

The EGL APIs are only available starting from API level 9. You can, however, use the VM to

perform some of the operations that you would get from those APIs. These operations include

surface creation and flipping. For an example of how to use GLSurfaceView, see Introducing

GLSurfaceView.

Android API level 8

The NDK provides the following APIs for developing native code that runs on Android 2.2

system images and above.jnigraphics

The jnigraphics library exposes a C-based interface that allows native code to reliably access the

pixel buffers of Java bitmap objects. The workflow for using jnigraphics is as follows:

https://developer.android.com/ndk/guides/android_mk.html
https://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetString.xml
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/graphics/opengl.html#manifest
https://developer.android.com/ndk/guides/stable_apis#egl
http://android-developers.blogspot.com/2009/04/introducing-glsurfaceview.html
http://android-developers.blogspot.com/2009/04/introducing-glsurfaceview.html

CSE/SNSCT Page 5

1. Use AndroidBitmap_getInfo() to retrieve information from JNI, such as width and height, about

a given bitmap handle.

2. Use AndroidBitmap_lockPixels() to lock the pixel buffer and retrieve a pointer to it. Doing so

ensures that the pixels do not move until the app calls AndroidBitmap_unlockPixels().

3. In native code, modify the pixel buffer as appropriate for its pixel format, width, and other

characteristics.

4. Call AndroidBitmap_unlockPixels() to unlock the buffer.

To use jnigraphics, include the <bitmap.h> header in your source code, and link

against jnigraphics by including the following line in your Android.mk file:

LOCAL_LDLIBS += -ljnigraphics

Additional details about this feature are in the comments of the <android/bitmap.h> file.

Android API level 9

The NDK provides the following APIs for developing native code that runs on Android 2.3

system images and above.

EGL

EGL provides a native platform interface for allocating and managing OpenGLES surfaces. For

more information about its features, see EGL Native Platform Interface.

EGL allows you to perform the following operations from native code:

 List supported EGL configurations.

 Allocate and release OpenGLES surfaces.

 Swap or flip surfaces.

The following headers provide EGL functionality:

 <EGL/egl.h>: the main EGL API definitions.

https://developer.android.com/ndk/guides/android_mk.html
http://www.khronos.org/egl

CSE/SNSCT Page 6

 <EGL/eglext.h>: EGL extension-related definitions.

To link against the system's EGL library, add the following line to your Android.mk file:

LOCAL_LDLIBS += -Legl

OpenSL ES

Android native audio handling is based on the Khronos Group OpenSL ES 1.0.1 API.

The standard OpenSL ES

headers <SLES/OpenSLES.h> and <SLES/OpenSLES_Platform.h> contain the declarations

necessary for performing audio input and output from the native side of Android. The NDK

distribution of the OpenSL ES also provides Android-specific extensions. For information about

these extensions, see the comments

in <SLES/OpenSLES_Android.h> and <SLES/OpenSLES_AndroidConfiguration.h>.

The system library libOpenSLES.so implements the public native audio functions. Link against it

by adding the following line to your Android.mk file:

LOCAL_LDLIBS += -lOpenSLES

https://developer.android.com/ndk/guides/android_mk.html
https://developer.android.com/ndk/guides/android_mk.html

	Android NDK Native APIs
	Native API highlights
	Android API level 3
	C library
	Android API level 9
	EGL

