
Input/Output ports :

 A.2 Program Compilation
 A.3 Is this a happy ending? to:

In order to synchronize the operation of I/O ports with the internal
8-bit organization of the microcontroller, they are, similar to registers,

grouped into five ports denoted by A, B, C, D and E. All of them have

several features in common:

 For practical reasons, many I/O pins are multifunctional. If a pin performs any of these

functions, it may not be used as a general-purpose input/output pin.

 Every port has its ‘satellite’, i.e. the corresponding TRIS register: TRISA, TRISB, TRISC

etc. which determines the performance of port bits, but not their contents.

By clearing any bit of the TRIS register (bit=0), the corresponding port
pin is configured as an output. Similarly, by setting any bit of the TRIS

register (bit=1), the corresponding port pin is configured as an input. This

rule is easy to remember 0 = Output, 1 = Input.

http://www.mikroe.com/ebooks/pic-microcontrollers-programming-in-c/program-compilation/
http://www.mikroe.com/ebooks/pic-microcontrollers-programming-in-c/is-this-a-happy-ending/

PORTA and TRISA register

Port A is an 8-bit wide, bidirectional port. Bits of the TRISA and ANSEL

registers control the Port A pins. All Port A pins act as digital

inputs/outputs. Five of them can also be analog inputs (denoted by AN):

RA0 = AN0 (determined by the ANS0 bit of the ANSELregister) RA1 =

AN1 (determined by the ANS1 bit of the ANSELregister) RA2 = AN2

(determined by the ANS2 bit of the ANSELregister) RA3 = AN3
(determined by the ANS3 bit of the ANSELregister) RA5 = AN4

(determined by the ANS4 bit of the ANSELregister) Similar to bits of the

TRISA register determine which of the pins are to be configured as inputs

and which ones as outputs, the appropriate bits of the ANSEL register
determine whether pins are to be configured as analog inputs or digital

inputs/outputs. Each bit of this port has an additional function related to

some of the built-in peripheral units, which will be described in later

chapters. This chapter covers only the RA0 pin’s additional function since
it is related to port A and the ULPWU unit. Let's do it in mikroC...

// The PORTA.2 pin is configured as a digital input.

// All other PORTA pins are digital outputs

ANSEL = ANSELH = 0; // All I/O pins are configured as digital

PORTA = 0; // All PORTA pins are cleared

TRISA = 0b00000100; // All PORTA pins except PORTA.2 are configured as outputs

...

ULPWU UNIT

The microcontroller is commonly used in devices which operate

periodically and completely independently using a battery power supply.

Minimum power consumption is one of the priorities here. Typical
examples of such applications are: thermometers, fire detection sensors

and the like. It is known that a reduction in clock frequency reduces the

power consumption, thus one of the most convenient solutions to this

problem is to slow down the clock, i.e. to use 32KHz quartz crystal
instead of 20MHz.

Setting the microcontroller to sleep mode is another step in the same

direction. Still, the problem is how to wake up the microcontroller and set
it to normal mode? It is obviously necessary to have an external signal to

change the logic state of some of the pins. This signal must be generated

by additional electronics, which causes higher power consumption of the

entire device...
The ideal solution would be that the microcontroller wakes up periodically

by itself, which is not impossible at all. The circuit which enables it is

shown in figure on the left.

The principle of operation is simple: A pin is configured as an output and

a logic one (1) is brought to it. This causes the capacitor to be charged.

Immediately after this, the same pin is configured as an input. The

change of logic state enables an interrupt and the microcontroller is set
to Sleep mode. All that’s left now is to wait for the capacitor to discharge

by the leakage current flowing out through the input pin. When it occurs,

an interrupt takes place and the microcontroller proceeds with the

program execution in normal mode. The whole procedure is repeated.

Theoretically, this is a perfect solution. The problem is that all pins able to

cause an interrupt in this way are digital and have relatively large leakage

current when their voltage is not close to the limit values Vdd (1) or Vss
(0). In this case, the condenser is discharged for a short time since the

current amounts to several hundreds of microamperes. This is why the

ULPWU circuit, capable of registering slow voltage drops with minimum

power consumption, was designed. Its output generates an interrupt,
while its input is connected to one of the microcontroller pins. It is the

RA0 pin. Referring to figure (R=200 ohms, C=1nF), discharge time is

approximately 30mS, while a total consumption of the microcontroller is

1000 times lower (several hundreds of nanoamperes).

PORTB and TRISB register

Port B is an 8-bit wide, bidirectional port. Bits of the TRISB register

determine the function of its pins.

Similar to port A, a logic one (1) in the TRISB register configures the

appropriate portB pin as an input and vice versa. Six pins of this port can

act as analog inputs (AN). The bits of the ANSELH register determine
whether these pins are to be configured as analog inputs or digital

inputs/outputs: RB0 = AN12 (determined by the ANS12 bit of the ANSELH

register) RB1 = AN10 (determined by the ANS10 bit of the ANSELH

register) RB2 = AN8 (determined by the ANS8 bit of the ANSELH register)
RB3 = AN9 (determined by the ANS9 bit of the ANSELH register) RB4 =

AN11 (determined by the ANS11 bit of the ANSELH register) RB5 = AN13

(determined by the ANS13 bit of the ANSELH register) Each port B pin

has an additional function related to some of the built-in peripheral units,
which will be explained in later chapters. This port has several features

which distinguish it from other ports and make its pins commonly used:

 All the port B pins have built in pull-up resistors, which make them ideal for connection to

push buttons (keyboard), switches and optocouplers. In order to connect these resistors to the

microcontroller ports, the appropriate bit of the WPUB register should be set.*

Having a high level of resistance (several tens of kiloohms), these ‘virtual’

resistors do not affect pins configured as outputs, but serves as a useful

complement to inputs. As such, they are connected to the inputs of CMOS

logic circuits. Otherwise, they would act as if they are floating due to their
high input resistance.

* Apart from the bits of the WPUB register, there is another bit affecting
the installation of all pull-up resistors. It is the RBPU bit of the

OPTION_REG.

 If enabled, each port B bit configured as an input may cause an interrupt by changing its logic

state. In order to enable pins to cause an interrupt, the appropriate bit of the IOCB register

should be set.

Thanks to these features, the port B pins are commonly used for checking
push buttons on the keyboard because they unerringly register any

button press. Thus, there is no need to ‘scan’ these inputs all the time.

When the X, Y and Z pins are configured as outputs set to logic one (1), it

is only necessary to wait for an interrupt request which arrives upon any

button press. After that, by combining zeros and ones on these outputs it
is checked which push button is pressed. Let's do it in mikroC...

/* The PORTB.1 pin is configured as a digital input. Any change of its logic state will cau
se

an .i.n.terrupt. It also has a pull-up resistor. All other PORTB pins are digital outputs.*
/

ANSEL = ANSELH = 0; // All I/O pins are configured as digital

PORTB = 0; // All PORTB pins are cleared

TRISB = 0b00000010; // All PORTB pins except PORTB.1 are configured as outputs

RBPU = 0; // Pull-up resistors are enabled

WPUB1 = 1; // Pull-up resistor is connected to the PORTB.1 pin

IOCB1 = 1; // The PORTB.1 pin may cause an interrupt on logic state change

RBIE = GIE = 1; // Interrupt is enabled

...

PIN RB0/INT

The RB0/INT pin is the only ‘true’ external interrupt source. It can be

configured to react to signal raising edge (zero-to-one transition) or signal

falling edge (one-to-zero transition). The INTEDG bit of the OPTION_REG

register selects the appropriate signal.

RB6 AND RB7 PINS

The PIC16F887 does not have any special pins for programming (the

process of writing a program to ROM). Port pins, normally available as
general-purpose I/O pins, are used for this purpose. To be more precise,

it is about port B pins used for clock (RB6) and data transfer (RB7) during

program loading. Besides, it is necessary to apply power supply voltage

Vdd (5V) as well as appropriate voltage Vpp (12-14V) for FLASH memory
programming. During programming, Vpp voltage is applied to the MCLR

pin. You don’t have to think of all details concerning this process, nor

which one of these voltages is applied first since the programmer’s

electronics is in charge of that. What is very important here is that the
program may be loaded to the microcontroller even after soldering it onto

the target device. Normally, the loaded program can also be changed in

the same way. This function is called ICSP (In-Circuit Serial

Programming). In order to use it properly, it is necessary to plan ahead. A

piece of cake! It is only necessary to install a miniature 5-pin connector
onto the target device so as to provide the microcontroller with necessary

programming voltages. In order to prevent these voltages from

interfering with other device electronics connected to microcontroller pins,

all additional peripheral devices should be disconnected during the
process of programming using resistors or jumpers.

As you can see, voltages applied to programmer's socket pins are the

same as those used during ICSP programming

PORTC and TRISC register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register

determine the function of its pins. Similar to other ports, a logic one (1) in

the TRISC register configures the appropriate portC pin as an input.

All additional functions of port C bits will be explained later.

PORTD and TRISD register

Port D is an 8-bit wide, bidirectional port. Bits of the TRISD register

determine the function of its pins. A logic one (1) in the TRISD register
configures the appropriate portD pin as an input.

PORTE and TRISE register

Port E is a 4-bit wide, bidirectional port. The TRISE register’s bits

determine the function of its pins. Similar to other ports, a logic one (1) in

the TRISE register configures the appropriate portE pin as an input. The

exception is the RE3 pin which is always configured as an input.

Similar to ports A and B, three pins can be configured as analog inputs in

this case. The ANSELH register bits determine whether a pin will act as an
analog input (AN) or digital input/output: RE0 = AN5 (determined by the

ANS5 bit of the ANSELregister); RE1 = AN6 (determined by the ANS6 bit

of the ANSELregister); and RE2 = AN7 (determined by the ANS7 bit of the

ANSELregister). Let's do it in mikroC...

/* The PORTE.0 pin is configured as an analog input while another three pins of the same

 port are configured as digital. */

...

ANSEL = 0b00100000; // The PORTE.0 pin is configured as analog

ANSELH = 0; // All other I/O pins are configured as digital

TRISE = 0b00000001; // All PORTE pins except PORTE.0 are configured as outputs

PORTE = 0; // All PORTE pins are cleared

...

ANSEL and ANSELH register

The ANSEL and ANSELH registers are used to configure the input mode of

an I/O pin to analog or digital.

The rule is: To configure a pin as an analog input, the appropriate bit of

the ANSEL or ANSELH registers must be set (1). To configure a pin as a
digital input/output, the appropriate bit must be cleared (0). The state of

the ANSEL bits has no influence on digital output functions. The result of

any attempt to read a port pin configured as an analog input will be 0.

In Short

You will probably never write a program which doesn't use ports so the

effort you make to learn all about them will definately pay off. Anyway,

they are probaly the simplest modules within the microcontroller. This is
how they are used:

 When designing a device, select a port through which the microcontroller will communicate

to peripheral environment. If you use only digital inputs/outputs, select any port you want. If

you intend to use some of the analog inputs, select the appropriate ports supporting such a pin

configuration (AN0-AN13).

 Each port pin may be configured as either input or output. Bits of the TRISA, TRISB,

TRISC, TRISD and TRISE registers determine how the appropriate port pins- PORTA,

PORTB, PORTC, PORTD and PORTE will act. Simply...

 If you use some of the analog inputs, it is first necessary to set the appropriate bits of the

ANSEL and ANSELH registers at the beginning of the program.

 If you use switches and push buttons as input signal source, connect them to port B pins

because they have pull-up resistors. The use of these resistors is enabled by the RBPU bit of

the OPTION_REG register, whereas the installation of individual resistors is enabled by bits

of the WPUB register.

 It is usually necessary to respond as soon as input pins change their logic state. However, it is

not necessary to write a program for checking pins’ logic state. It is far simpler to connect

such inputs to the PORTB pins and enable an interrupt to occur on every voltage change. Bits

of the IOCB and INTCON registers are in charge of that.

	Input/Output ports :
	PORTA and TRISA register
	ULPWU UNIT
	PORTB and TRISB register
	PIN RB0/INT
	RB6 AND RB7 PINS
	PORTC and TRISC register
	PORTD and TRISD register
	PORTE and TRISE register
	ANSEL and ANSELH register
	In Short

