Lecture 6 PIC Programming in C

Code Space Limitations

- On a general purpose PC, we don't usually care about our program's size
- MB/GB/TB range for general purpose PCs
 Ex: 1300 line .C file 50 KB → 40 KB .hex file
- 2MB max in PIC18's Program ROM
- For our PIC18F452 \rightarrow Only 32KB

- See datasheet

Why C over ASM?

- While Assembly Language produces a much smaller .HEX file than C...
 - More human-readable in C
 - Easier to write and less time consuming
 - C is easier to modify and update
 - Don't care about absolute ROM locations
 - Access to many C function libraries
 - C code is portable and can be used on other microcontrollers with little or no modification

C Integer Data Types (Generic)

Туре	Explanation	Format Specifier
char	Smallest addressable unit of the machine that can contain basic character set. It is an integer type. Actual type can be either signed or unsigned depending on the implementation. It contains CHAR_BIT bits. ^[3]	%с
signed char	Of the same size as chaz, but guaranteed to be signed. Capable of containing at least the [-127, +127] range; ^{[3][4]}	%c (or %hhi for numerical output)
unsigned char	Of the same size as char, but guaranteed to be unsigned. It is represented in binary notation without padding bits; thus, its range is exactly [0, 2 CHAR_BIT - 1]. ^[5]	%c (or %hhu for numerical output)
short short int signed short signed short int	Short signed integer type. Capable of containing at least the [-32767, +32767] range; ^{[3][4]} thus, it is at least 16 bits in size. The negative value is -32767 (not -32768) due to the one's-complement and sign-magnitude representations allowed by the standard, though the two's-complement representation is much more common. ^[6]	%hi
unsigned short unsigned short int	Similar to short, but unsigned.	%hu
int signed signed int	Basic signed integer type. Capable of containing at least the [-32767, +32767] range; ^{[3][4]} thus, it is at least 16 bits in size.	%i or %d
unsigned unsigned int	Similar to int, but unsigned.	%u
long long int signed long signed long int	Long signed integer type. Capable of containing at least the [-2147483647, +2147483647] range; ^{[3][4]} thus, it is at least 32 bits in size.	%li
unsigned long unsigned long int	Similar to long, but unsigned.	%lu
long long long long int signed long long signed long long int	Long long signed integer type. Capable of containing at least the [-9223372036854775807, +9223372036854775807] range; ^{[3][4]} thus, it is at least 64 bits in size. Specified since the C99 version of the standard.	%Ili
unsigned long long unsigned long long int	Similar to long long, but unsigned. Specified since the C99 version of the standard.	%llu

C Integer Data Types (C18 Compiler)

TABLE 2-1: INTEGER DATA TYPE SIZES AND LIMITS

Туре	Size	Minimum	Maximum
char ^(1,2)	8 bits	-128	127
signed char	8 bits	-128	127
unsigned char	8 bits	0	255
int	16 bits	-32,768	32,767
unsigned int	16 bits	0	65,535
short	16 bits	-32,768	32,767
unsigned short	16 bits	0	65,535
short long	24 bits	-8,388,608	8,388,607
unsigned short long	24 bits	0	16,777,215
long	32 bits	-2,147,483,648	2,147,483,647
unsigned long	32 bits	0	4,294,967,295

C Integer Data Types (XC8 Compiler)

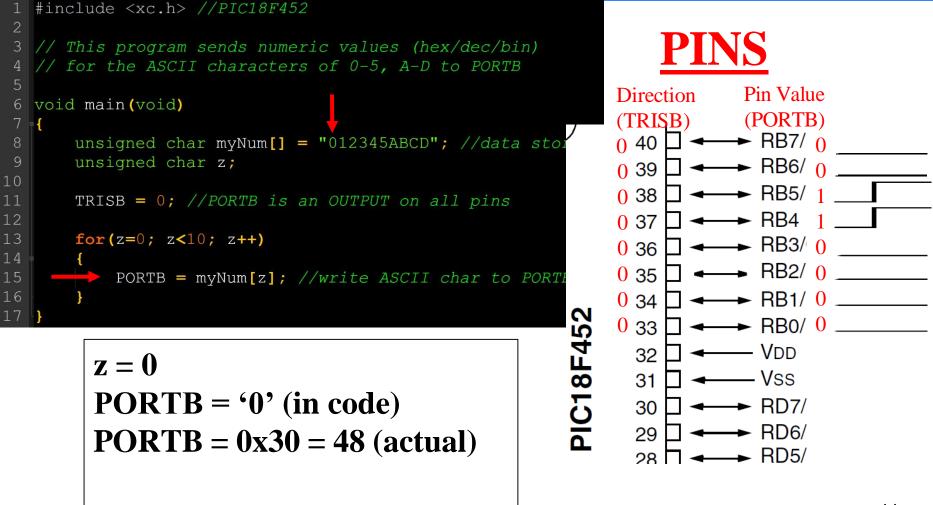
TABLE 5-1: INTEGER DATA TYPES

Туре	Size (bits)	Arithmetic Type
bit	1	Unsigned integer
signed char	8	Signed integer
unsigned char	8	Unsigned integer
signed short	16	Signed integer
unsigned short	16	Unsigned integer
signed int	16	Signed integer
unsigned int	16	Unsigned integer
signed short long	24	Signed integer
unsigned short long	24	Unsigned integer
signed long	32	Signed integer
unsigned long	32	Unsigned integer
signed long long	32	Signed integer
unsigned long long	32	Unsigned integer

Unsigned char (0 to 255)

- PIC18 is 8-bit architecture, char type (8 bits) is the most natural choice
- C compilers use signed char (-128 to +127) by default unless we put "unsigned"
 - char == signed char

```
Write a C18 program to send values 00-FF to Port B.
Solution:
#include <P18F458.h> //for TRISB and PORTB declarations
void main(void)
{
    unsigned char z;
    TRISB = 0; //make Port B an output
    for(z=0;z<=255;z++)
    PORTB = z;
    while(1); //NEEDED IF RUNNING IN HARDWARE
}</pre>
```


	Hex			Hex		Char
	0x20		Space			6
	0x21		1	0x41		A
	0x22 0x23		#	0x42 0x43		B
	0x24		s s	0x43		D
Write a C18 program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B,			de de	0x45		E
C, and D to Port B.	0x26		&	0x46		F
C, and D to I oft D.	0x27			0x47		G
and the all the second the last of the second s	0x28		(H
Solution:	0x29 0x2A)	0x49 0x4A		I
<pre>#include <p18f458.h></p18f458.h></pre>			+	0x4A 0x4B		K
void main(void)	0x2C			0x4D 0x4C		L
	0x2D		-	0x4D		М
	0x2E	46		0x4E	78	N
unsigned char mynum[] = "012345ABCD";//data is stored in RAM	0x2F		1	0x4F		0
unsigned char z;	0x30		0	0x50		Р
TRISB = 0; //make Port B an output	0x31 0x32		1	0x51 0x52		Q
for(z=0;z<10;z++)	0x32		2	0x52		R
	0x34		4	0x54		т
<pre>PORTB = mynum[z];</pre>			5	0x55		U
while(1); //stay here forever	0x36	54	6	0x56	86	v
	0x37		7	0x57		W
	0x38		8	0x58		Х
	0x39		9	0x59		Y
	0x3A 0x3B			0x5A 0x5B		Z
	0x3B		;	0x5B		
	0x3D		=	0x5D		1
	0x3E		>	0x5E		~
	0x3F	63	?	0x5F	3 95	_

```
#include <xc.h> //PIC18F452
 2
 3
   // This program sends numeric values (hex/dec/bin)
   // for the ASCII characters of 0-5, A-D to PORTB
 5
   void main (void)
 6
7 = {
8
       unsigned char myNum[] = "012345ABCD"; //data stored in RAM
       unsigned char z;
10
       TRISB = 0; //PORTB is an OUTPUT on all pins
12
13
       for(z=0; z<10; z++)</pre>
14
15
           PORTB = myNum[z]; //write ASCII char to PORTB
16
```

z = 0 PORTB = '0' (in code) PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	0
0x21	33	1	0x41	65	A
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	00	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39		0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	1	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	1	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	10 <mark>7</mark>
0x37	55	7	0x57	87	W

PORTB = 0b 0011 0000 (pins)

```
1 #include <xc.h> //PIC18F452
2
3 // This program sends numeric values (hex/dec/bin)
4 // for the ASCII characters of 0-5, A-D to PORTB
5
6 void main(void)
7 {
8 unsigned char myNum[] = "012345ABCD"; //data stored
9 unsigned char z;
10
11 TRISB = 0; //PORTB is an OUTPUT on all pins
12
13 for(z=0; z<10; z++)
14 {
15 PORTB = myNum[z]; //write ASCII char to PORTB
16 }
17 PORTB = myNum[z]; //write ASCII char to PORTB
17 PORTB</pre>
```

z = 1 PORTB = '1' (in code) PORTB = 0x31 = 49 (actual)

PORTB = 0b 0011 0001 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	0
0x21	33	1	0x41	65	Α
0x22	34	п	0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	00	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39		0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44		0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	1	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	12 <mark>v</mark>
0x37	55	7	0x57	87	W

1	<pre>#include <xc.h> //PIC18F452</xc.h></pre>
2	
3	// This program sends numeric values (hex/dec/bin)
4	// for the ASCII characters of 0-5, A-D to PORTB
5	
6	void main (void)
7	= {
8	<pre>unsigned char myNum[] = "012345ABCD"; //data stored</pre>
9	unsigned char z;
10	
11	TRISB = 0; //PORTB is an OUTPUT on all pins
12	
13	for(z=0; z<10; z++)
14	⊧ {
15	PORTB = myNum[z]; //write ASCII char to PORTB
16	}
17	

z = 6 PORTB = 'A' (in code) PORTB = 0x41 = 65 (actual)

PORTB = 0b 0100 0001 (pins)

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	0
0x21	33	1	0x41	65	A
0x22	34		0x42	66	В
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	00	0x45	69	Е
0x26	38	&	0x46	70	F
0x27	39	1	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	1	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	1	0x4F	79	0
0x30	48	0	0x50	80	Р
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	13 <mark>7</mark>
0x37	55	7	0x57	87	W

Signed char (-128 to +127)

• Still 8-bit data type but MSB is sign value

```
Write a C18 program to send values of -4 to +4 to Port B.
Solution:
//sign numbers
#include <P18F458.h>
void main(void)
    char mynum[] = \{+1, -1, +2, -2, +3, -3, +4, -4\};
    unsigned char z;
                                 //make Port B an output
     TRISB = 0;
     for(z=0;z<8;z++)
       PORTB = mynum[z];
                                 //stay here forever
     while(1);
```

Unsigned int (0 to 65,535)

- PIC18 is 8-bit architecture, **int type** (16 bits) takes two bytes of RAM (only use when necessary)
- C compilers use signed int (-32,768 to +32,767) by default unless we put "unsigned"
 - int == signed int

```
#include <P18F458.h>
void main(void)
{
    unsigned int z;
    TRISB = 0; //make Port B an output
    for(z=0;z<=50000;z++)
    {
        PORTB = 0x55;
        PORTB = 0xAA;
     }
    while(1); //stay here forever
}</pre>
```

Larger Integer Types (short, long, short long)

Write a C18 program to toggle all bits of Port B 100,000 times.

```
Solution:
```

```
//toggle PB 100,00 times
#include <P18F458.h>
void main(void)
    unsigned short long z;
    unsigned int x;
    TRISE = 0;
                              //make Port B an output
    for(z=0;z=100000;z++)
        PORTB = 0x55;
        PORTB = 0xAA;
    while(1);
                              //stay here forever
```

Floating-Point Data Types

- Can store and calculate numbers with decimals (precision)
- Always signed, can't be unsigned
 2.5, 32.05898, -1.00232, .2600313, 51156.01, etc.

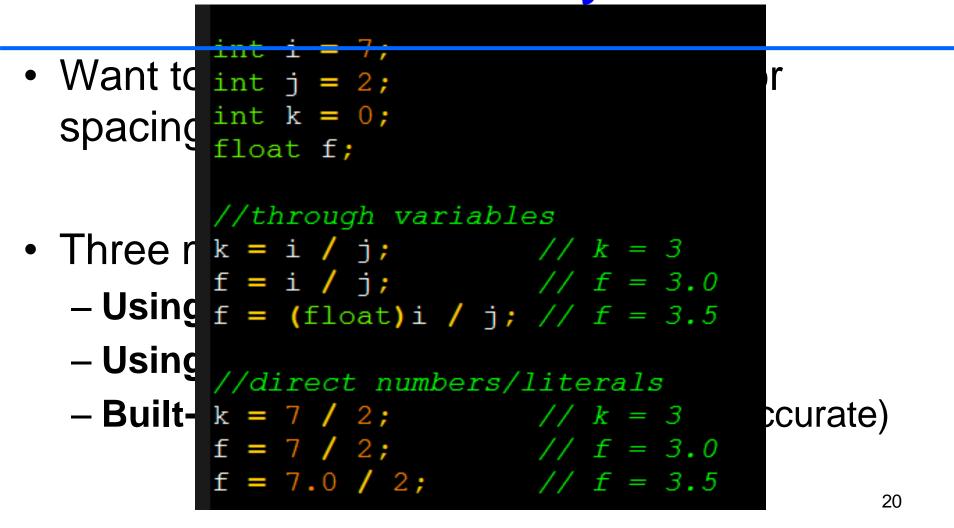
TABLE 5-3: FLOATING-POINT DATA TYPES

Туре	Size (bits)	Arithmetic Type
float	24 or 32	Real
double	24 or 32	Real
long double	same as double	Real

• Further info: <u>Text</u> and <u>Video Explanation</u> ¹⁷

Modulus

 In C can use % to perform a modulus of two numbers (find the <u>whole number</u> remainder from a "repeated subtraction")


- 25 % 5 = 0
- 25 % 7 = 4
- 25 % 10 = 5
- 428 % 100 = 28
- 1568 % 10 = 8

Casting to Prevent Data Loss

```
int i = 7;
int j = 2;
int k = 0;
float f;
//through variables
k = i / j; // k =
f = i / j; // f = ?
f = (float)i / j; // f =
//direct numbers/literals
k = 7 / 2; // k =
f = 7 / 2; // f =
f = 7.0 / 2; // f =
```

Casting to Prevent Data Loss

Time Delay

Two Factors for Delay Accuracy in C

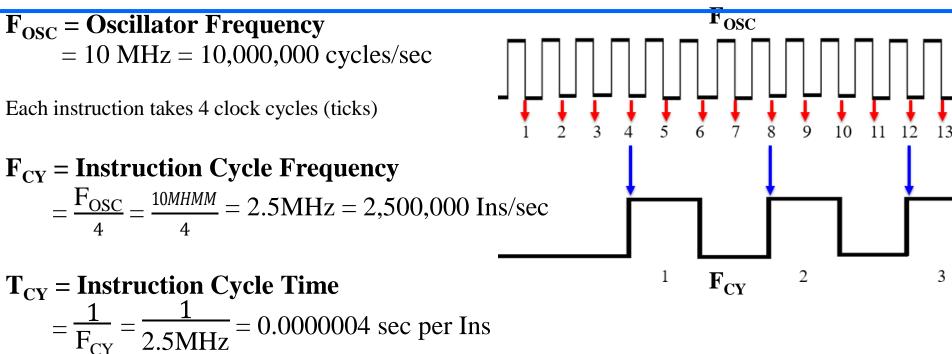
- 1. The crystal's frequency (int. or ext.)
 - Duration of clock period for instruction cycle
- 2. The compiler used for the C program
 - In ASM, we control the exact instructions
 - Different compilers produce different ASM code

Time Delay Example

Write a C18 program to toggle all the bits of Port B ports continuously with a 250 ms delay. Assume that the system is PIC18F458 with XTAL = 10 MHz.

```
#include <PIC18F452.h>
void MS Delay(unsigned int);
void main (void)
    TRISE = 0;
    while(1)
         PORTB = 0x55;
        MS Delay (250);
         PORTB = 0 \times AA;
        MS Delay (250);
void MS Delay (unsigned int msTime)
    unsigned int i;
    unsigned int j;
    for(i=0; i<msTime; i++)</pre>
         for(j=0; j<2500; j++);</pre>
             //NOF
```

 $F_{OSC} = 10 \text{ MHz} = 10,000,000 \text{ cycles/sec}$


Each instruction takes 4 clock cycles (ticks)

```
F_{CY} = \overline{\text{Instruction Cycle Frequency}} = \frac{10MHMM}{4} = 2.5\text{MHz} = 2,500,000 \text{ Ins/sec}
```

 $T_{CY} = \text{Instruction Cycle Time}$ = 1 / 2.5MHz = 0.0000004 sec per Ins = 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms? 1ms / 0.0004ms = 2,500 → 2,500 Instruction Cycles take place in 1ms
 → 2,500 Instructions can complete in 1ms²³

Instruction Cycle

 $= 0.0004 \text{ ms} = 0.4 \text{ }\mu\text{s}$

How many IC (instructions) fit into 1ms? 1ms / 0.0004ms = 2,500

- \rightarrow 2,500 Instruction Cycles take place in 1ms
- \rightarrow 2,500 Instructions can complete in 1ms (generalizing since most instructions only take 1 Ins. Cycle)

24

Delay Functions in the XC8 Compiler

- 1. Include the "**xc.h**" header file
- 2. Define your crystal's frequency

• _XTAL_FREQ

- 3. Can now use these 2 delay functions:
 - ____delay_us(x); //unsigned long (0 4294967295)
 - ____delay_ms(x); //unsigned long (0 4294967295)

```
#include <xc.h>
    #define XTAL FREQ 1000000
                                     // Running at 10MHz
    #define LED LEFT
                        PORTAbits.RA3 // QwikFlash red LED (left) to toggle
    #define LED CENTER PORTAbits.RA2 // QwikFlash red LED (center) to toggle
                        PORTAbits.RA1 // QwikFlash red LED (right) to toggle
    #define LED RIGHT
    void Toggle LEDs(void);
10
11
    void main (void)
12
       TRISA = 0; //PORTA is an OUTPUT
14
15
        //Main routine
       while(1)
16
        ł
18
            //Your main code goes here
19
            Toggle LEDs();
20
21
22
23
    void Toggle LEDs (void)
24
   ₽ {
25
       LED LEFT ^{=}1;
26
          delay ms(100);
27
28
        LED CENTER ^= 1;
29
          delay ms(100);
30
31
        LED RIGHT ^{=} 1;
32
          delay ms(100);
33
```

PORT I/O Programming in C

- Btye-Size Register Access
 - Labels still the same
 - PORTA PORTD
 - TRISA TRISD
 - INTCON
- Bit-Addressable Register Access
 - PORTBbits.RB3
 - TRISCbits.RC7 or TRISCbits.TRISC7– INTCONbits.RBIE

PORT I/O Programming in C

TRISB = $0;$	//make Port B an output
TRISC = $0;$	//make Port C an output
PORTB = 00;	//clear Port B
LED = 0;	//clear Port C
for(;;)	//repeat forever
i PORTB++;	//increment Port B
LED++;	//increment Port C
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

```
unsigned char mybyte;
TRISB = 0xFF; //Port B as input
TRISC = 0; //Port C as output
while(1)
{
    mybyte = PORTB; //get a byte from Port B
    MSDelay(500);
    PORTC = mybyte; //send it to Port C
}
```

PORTxbits.Rxy

Table 7-2: Single-Bit Addresses of PIC18F458/4580 Ports						
PORTA	PORTB	PORTC	PORTD	PORTE	Port's Bit	
RA0	RB0	RC0	RD0	RE0	D0	
RA1	RB1	RC1	RD1	RE1	D1	
RA2	RB2	RC2	RD2	RE2	D2	
RA3	RB3	RC3	RD3		D3	
RA4	RB4	RC4	RD4		D4	
RA5	RB5	RC5	RD5		D5	
	RB6	RC6	RD6		D6	
	RB7	RC7	RD7		D7	

PORT I/O Programming in C

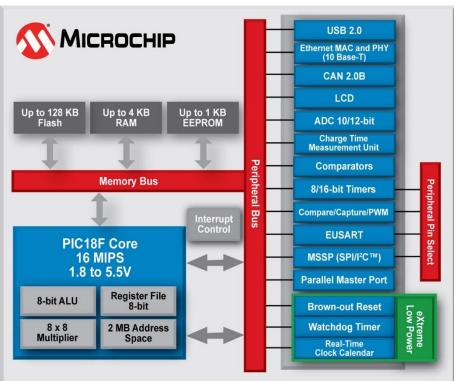
```
#include <P18F458.h>
void MSDelay(unsigned int);
#define Dsensor PORTBbits.RB1
#define buzzer PORTCbits.RC7
void main(void)
                                   //PORTB.1 as an input
    TRISBbits.TRISB1 = 1;
                                   //make PORTC.7 an output
    TRISChits.TRISC7 = 0;
    while (Dsensor == 1)
        buzzer = 0;
        MSDelay(200);
        buzzer = 1;
        MSDelay(200);
    while(1);
                             //stay here forever
                                                             30
```

Write a C18 program to get the status of bit RB0, and send it to RC7 continuously. Solution:

```
#include <P18F458.h>
#define inbit PORTBbits.RB0
#define outbit PORTCbits.RC7
void main(void)
    {
      TRISBbits.TRISB0 = 1; //make RB0 an input
      TRISCbits.TRISC7 = 0; //make RC7 an output
      while(1)
        {
            outbit = inbit; //get a bit from RB0
            //and send it to RC7
      }
```

.ASM Generated from C

1:		<pre>#include <p18f458.h></p18f458.h></pre>	
2:		#define inbit PORTBbits.RB0	
3:		#define outbit PORTCbits.RC7	
4:		void main(void)	
5:		{	
6:		TRISBbits.TRISB0 = 1;	//make RB0 an input
0000E2	8093	BSF 0xf93, 0, ACCESS	
7:		TRISCUITS.TRISC7 = $0;$	//make RC7 an output
0000E4	9E94	BCF 0xf94, 0x7, ACCESS	
8:		while(1)	
0000F2	D7F9	BRA 0xe6	
9:		{	
10:		outbit = inbit;	//get bit from RB0
0000E6	5081	MOVF 0xf81, W, ACCESS	
0000E8	0B01	ANDLW 0x1	
0000EA	E002	BZ 0xf0	
0000EC	8E82	BSF 0xf82, 0x7, ACCESS	
0000EE	D001	BRA 0xf2	
0000F0	9E82	BCF 0xf82, 0x7, ACCESS	
11:			//and send it to RC7
12:		}	
13:		}	32
0000F4	0012	RETURN 0	


Header Files

- Remember that certain register/variable names are <u>not native C keywords</u>
- They are PIC-specific
 PORTB, TRISA, TMR0H, PRODL, etc.
- Defined and mapped in header file

 Using regular data types (char, int, struct, etc.)
- Regular P18Fxxx.h (device) header files
 - C:\Program Files (x86)\Microchip\xc8\v1.20\include

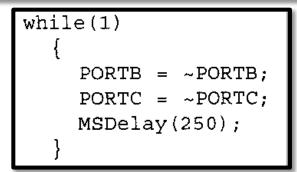
Header Files

- Other functional headers are available
 - adc.h
 - delays.h
 - i2c.h
 - pwm.h
 - timers.h
 - usart.h

- Peripheral library Header Files
 - C:\Program Files (x86)\Microchip\xc8\v1.20\include\plib
 - C:\Program Files (x86)\Microchip\xc8\v1.20\sources\pic18\plib

Logic Operations in C

Bit-Wise Operators


ble 7-3: Bit-wise Logic Operators for C						
		AND	OR	EX-OR	Inverter	
Α	В	A&B	AB	A^B	Y=~B	
0	0	0	0	0	1	
0	1	0	1	1	0	
1	0	0	1	1		
1	1	1	1	0		

<<

- Bit-Wise Shift Operators
 - Can shift right/left by X bits
 - Shift right >>
 - Shift left

Logic Operations in C

TRISB = 0;	//make Ports B, C,
TRISC = 0;	//and D output ports
TRISD = 0;	
PORTB = 0x35 & 0x0F;	//ANDing
PORTC = $0x04$ $0x68;$	//ORing
$PORTD = 0x54 ^ 0x78;$	//XORing
PORTB = -0x55;	//inverting
PORTC = 0x9A >> 3;	<pre>//shifting right 3 times</pre>
PORTD = 0x77 >> 4;	//shifting right 4 times
PORTB = $0x6 << 4;$	//shifting left 4 times
<pre>while(1);</pre>	//stay here forever

Binary (hex) to Decimal and ASCII Conversion

- Sometimes we can't handle multiple-digit decimals natively in C for display purposes
- printf() is standard for generic C but requires more memory space than a PIC18 is willing to sacrifice
- Best to build your own "custom" print or display functions in C

Extract Single Decimal Digits

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying

Extract Single Decimal Digits

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying

1	unsigned char whole, part, d1, d2, d3;
2	
3	whole = 253; //whole == d3_d2_d1
Л	

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	A
0x22	34		0x42	66	в
0x23	35	#	0x43	67	C
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	E
0x26	38	&	0x46	70	F
0x27	39	1.1	0x47	71	G
0x28	40	(0x48	72	H
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	,	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	v
0x37	55	7	0x57	87	W
0x38	56	8	0x58	88	х
0x39	57	9	0x59	89	Y
0x3A	58	:	0x5A	300	Z
0X3A	50		0X5A	390	4

Extract Single Decimal Digits Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying

1	unsigned char whole	, part,	d1, d2,	, d3;
2				
3	<pre>whole = 253; //whol</pre>	e = d3	_d2_d1	
4				
5	<pre>part = whole / 10;</pre>	//part	= 253 ,	/ 10 = 25
6	d1 = whole % 10;	//d1	= 253	810 = 3
7	d2 = part % 10;	//d2	= 25	§ 10 = 5
8	d3 = part / 10;	//d3	= 25 ,	/ 10 = 2

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	A
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	E
0x26	38	&	0x46	70	F
0x27	39	10	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	,	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	v
0x37	55	7	0x57	87	W
0x38	56	8	0x58	88	х
0x39	57	9	0x59	89	Y
0x3A	58	:	0x5A	400	Z

Extract Single Decimal Digits

 Want each digit of 253 (0b11111101, 0xFD) and convert to ASCII for displaying

1	unsigned char whole, part, d1, d2, d3;	0x20 0x21
2		0x22
		0x23
3	whole = 253; //whole == d3 d2 d1	0x24 0x25
4		0x26
4		0x27
5	part = whole / 10; //part = 253 / 10 = 25	0x28
C		0x29
6	d1 = whole $\$$ 10; //d1 = 253 $\$$ 10 = 3	0x2A 0x2B
7	d2 = part \$ 10; // $d2 = 25 $ 10 = 5$	0x2C
,		0x2D
8	d3 = part / 10; $//d3 = 25 / 10 = 2$	0x2E
9		0x2F 0x30
		0x30
10	d1 = d1 + 48; //or + 0x30	0x32
1 1	$d_{2} = d_{2} + 40$	0x33
11	d2 = d2 + 48; //or + 0x30	0x34
12	d3 = d3 + 48; //or + 0x30	0x35 0x36
-1-2-		0x36 0x37

Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	6
0x21	33	1	0x41	65	A
0x22	34		0x42	66	в
0x23	35	#	0x43	67	С
0x24	36	\$	0x44	68	D
0x25	37	8	0x45	69	E
0x26	38	&	0x46	70	F
0x27	39	1.1.5	0x47	71	G
0x28	40	(0x48	72	н
0x29	41)	0x49	73	I
0x2A	42	*	0x4A	74	J
0x2B	43	+	0x4B	75	K
0x2C	44	,	0x4C	76	L
0x2D	45	-	0x4D	77	М
0x2E	46		0x4E	78	N
0x2F	47	/	0x4F	79	0
0x30	48	0	0x50	80	P
0x31	49	1	0x51	81	Q
0x32	50	2	0x52	82	R
0x33	51	3	0x53	83	S
0x34	52	4	0x54	84	т
0x35	53	5	0x55	85	U
0x36	54	6	0x56	86	V
0x37	55	7	0x57	87	W
0x38	56	8	0x58	88	X
0x39	57	9	0x59	89	Y
0x3A	58	:	0x5A	490	Z
• •-					12

#define Directive

Can associate labels with numbers or registers as a constant

#define LED_OUTPUT PORTBbits.RB2 #define MAX_USERS 50

Questions?

- For PIC C Programming
 Textbook Ch. 7 for more details
- Start looking over Arithmetic/Logic
 Textbook Ch. 5