Reg.No:						
---------	--	--	--	--	--	--

SNS College of Technology, Coimbatore-35. (Autonomous)

B.E/B.Tech- Internal Assessment -II Academic Year 2023-2024 (Even Semester) Fourth Semester B

Aerospace Engineering 19AST203– Aircraft Structural Mechanics

Time: 1^{1/2} Hours Maximum Marks: 50

Answer All Questions

PART - A (5x 2 = 10 Marks)

			со	Blooms			
1	What causes elastic buckling?		CO2		Rem		
2	2 How do columns normally fail?		CO2		App		
3	3 Define skew load.		CO3		App		
4	4 What is unsymmetrical bending?		CO3		Rem		
5	Differentiate pure bending and symmetric bending.		CO3		App		
	PART – B (13+13+14=40 Marks)						
				CO	Blooms		
6	(a)	Derive an equation for eccentricity-containing columns.	13	CO2	App		
		(or)					
	(b)	Derive an expression for the Euler buckling equation with fixed on both ends.	13	CO2	App		
7.	(a)	Figure shows a rolled steel beam of an unsymmetrical I-Section. If a maximum bending stress in the beam section is not to exceed 40MPa. Find the moment which beam can resist. (All dimensions are in mm)		CO3	Eva		

		(or)			
	(b)	Find the greatest length of a mild steel rod of 30 mm \times 30 mm which can be used as a compressive member with one end fixed and the other end hinged. It carries a working load of 40 kN. Factor of safety = 4, α = 1/7500 and σ_C = 300N/mm ² . Compare the result with mm Euler. E = 2×10^5 N/mm ² .	13	CO3	
8.	(a)	Create an expression for the Euler buckling equation with hinges on both ends.	14	CO2	Cre
		(or)			
	(b)	Derive an expression for principal axis method in unsymmetrical bending.	14	CO3	Cre

Abbreviations Rem- Remember Ana-Analyze App-Apply Cre-Create Eva-Evaluate