
SNS COLLEGE OF TECHNOLOGY
COIMBATORE - 641035

MICROPROCESSORS AND MICROCONTROLLERS

CASE STUDY : 8051 ASSEMBLY LANGUAGE

WHAT IS 8051 ASSEMBLY LANGUAGE
PROGRAMMING

•The 8051 assembly language programming is
based on the memory registers. If we want to
manipulate data to a processor or controller by
performing subtraction, addition, etc., we cannot
do that directly in the memory, but it needs
registers to process and to store the data.

•Assembly language is a low level programming
language used to write program code in terms of
mnemonics

• The assembly language mnemonics are in the form of
op-code, such as MOV, ADD, JMP, and so on, which
are used to perform the operations

• Op-code: The op-code is a single instruction that can
be executed by the CPU. Here the op-code is a MOV
instruction.

• Operands: The operands are a single piece of data
that can be operated by the op-code. Example,
multiplication operation is performed by the operands
that are multiplied by the operand.

l

Registers: The 8051 has four register banks, each
containing eight registers (R0-R7). Registers R0 and R1
are used as the accumulator (A) and the B register,
respectively.Instructions: The instructions in 8051
assembly language are typically one-byte long and can
be categorized into various types such as data transfer,
arithmetic, logical, branch, and control instructions.Data
Transfer Instructions:MOV: Moves data from one
register/memory location to another.Example: MOV A,
#25H (Move immediate value 25H to accumulator A)

XCH: Exchanges the content of a register/memory location with
the accumulator.Example: XCH A, R1 (Exchange accumulator A
with register R1)Arithmetic Instructions:ADD: Adds the
accumulator with another register/memory location.Example:
ADD A, R2 (Add the content of register R2 to accumulator
A)SUBB: Subtracts the content of another register/memory
location from the accumulator with borrow.Example: SUBB A,
@R0 (Subtract the content of the address pointed by R0 from A
with borrow)

Programming in 8-bit 8051 assembly language involves writing

code that operates on 8-bit data and instructions.

Registers and Data Size: The 8051 microcontroller has a set of

registers, including the accumulator (A) and general-purpose

registers (R0-R7), each capable of holding 8 bits of data. This

means that data manipulation operations, such as addition,

subtraction, logical AND/OR, are performed on 8-bit data at a

time.Memory Architecture: The 8051 has an addressable

memory space of 64 KB. Each memory location holds 8 bits (1

byte) of data. The memory is organized into different banks and

areas, such as code memory (program memory), data memory,

and special function registers (SFRs)

Example:
ORG 0H ; Start of program memory

MOV A, #25H ; Load accumulator A with the first number (e.g., 25H)
MOV B, #3AH ; Load register B with the second number (e.g., 3AH)
ADD A, B ; Add the contents of accumulator A and register B

MOV 30H, A ; Store the result in memory location 30H

END ; End of program

• ORG 0H: This directive sets the origin of the program to
memory address 0.

• MOV A, #25H: This instruction loads accumulator A with
the first 8-bit number (e.g., 25H).

• MOV B, #3AH: This instruction loads register B with the
second 8-bit number (e.g., 3AH).

• ADD A, B: This instruction adds the contents of
accumulator A and register B and stores the result in
accumulator A.

• MOV 30H, A: This instruction stores the result (sum) in
memory location 30H.

• ORG 0H ; Start of program memoryMAIN:

• MOV A, #HIGH SOURCE ; Load high byte of source
number into accumulator

• MOV B, #HIGH DEST ; Load high byte of
destination number into B register

• SUBB A, B ; Subtract the high bytes, with
borrow from previous operation

• MOV DEST_H, A ; Store the result in the high
byte of the destination

• MOV A, #LOW SOURCE ; Load low byte of source
number into accumulator

• MOV B, #LOW DEST ; Load low byte of destination
number into B register

• SUBB A, B ; Subtract the low bytes, with
borrow from previous operation

• MOV DEST_L, A ; Store the result in the low byte
of the destination

• END ; End of programSOURCE:

• DW 1234H ; Source number (16-bit)DEST:

• DW 5678H ; Destination number (16-bit)DEST_H:

• DS 1 ; Destination high byteDEST_L:

• DS 1 ; Destination low byte

• MOV A, #HIGH SOURCE: Load the high byte of the
source number into the accumulator.

• MOV B, #HIGH DEST: Load the high byte of the
destination number into register B.

• SUBB A, B: Subtract the high bytes, with borrow from
the previous operation. This handles any carry from the
subtraction of the low bytes.

• MOV DEST_H, A: Store the result of the subtraction in
the high byte of the destination.Repeat the above steps
for the low bytes.

• END: Marks the end of the program

THANK YOU

