
20CS302 – OPERATING SYSTEMS
MODULE II - QUESTION BANK

PART – A

1. Enlist some of the queues on the typical system. Analyze in which state, each
queue play its role?

 All processes, upon entering into the system, are stored in the Job Queue.
 Processes in the Ready state are placed in the Ready Queue.
 Processes waiting for a device to become available are placed in Device

Queues. There are unique device queues available for each I/O device.

2. Every scheduling algorithm has a type of a situation where it is the best choice.
Find out the suitable scheduling algorithm for the given situations.
a) The incoming processes are short and there is no need for the processes to
execute in a specific order.
b) The processes are a mix of long and short processes and the task will only be
completed if all the processes are executed successfully in a given time.
a) In this case, FCFS works best when compared to SJF and RR because the
processes are short which means that no process will wait for a longer time. When each
process is executed one by one, every process will be executed eventually.
b) Round Robin scheduling works efficiently here because it does not cause
starvation and also gives equal time quantum for each process.

3. Give the difference between preemptive and non preemptive scheduling.

Preemptive Scheduling Non-Preemptive Scheduling
It allows a process to be interrupted in
the midst of its execution, taking the CPU
away and allocating it to another process.

It ensures that a process relinquishes
control of the CPU only when it finishes
with its current CPU burst.

It incurs a cost associated with access
shared data.

It does not increase the cost.

It also affect the design of the operating
system kernel

It does not affects the design of operating
system kernel

It is more complex Simple, but very inefficient
Example: Round robin Example: FCFS

4. What are the requirements that a solution to the critical section problem must
satisfy?

 Mutual Exclusion
 Progress
 Bounded Waiting

5. When does a race condition arise and how it is resolved?
A situation where several processes access and manipulate the same data
concurrently and outcome of the execution depends on the particular order in
which the access takes place, is called a race condition.
Resolved by using critical section problem.
A Critical Section is a code segment that accesses shared variables and has to
be executed as an atomic action.
It means that in a group of cooperating processes, at a given point of time, only
one process must be executing its critical section.
If any other process also wants to execute its critical section, it must wait until
the first one finishes.

6. Differentiate short-term, medium-term and long-term scheduling.

Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler
It is a job scheduler It is a CPU scheduler It is a process

swapping scheduler.
Speed is lesser than short

term scheduler
Speed is fastest among other

two
Speed is in between both

short and long term
scheduler.

It controls the
degree of

multiprogramming

It provides lesser control over
degree of multiprogramming

It reduces the
degree of

multiprogramming.
It is almost absent or minimal

in time sharing system
It is also minimal in time

sharing system
It is a part of Time sharing

systems.
It selects processes from
pool and loads them into

memory for execution

It selects those
processes which are

ready to execute

It can re-introduce the
process into memory and

execution can be continued.

7. Consider a system with four processes P1, P2, P3 and P4 and two resources
R1 and R2 respectively. Each resource has two instances. Furthermore:
P1 allocates an instance of R2 and requests an instance of R1
P2 allocates an instance of R1 and doesn’t need any other resource.
P3 allocates an instance of R1 and requests an instance of R2
P4 allocates an instance of R2 and doesn’t need any other resource.
Draw the resource allocation graph. Is there any deadlock in this situation?
Justify your answer.

There is a cycle P1 -> R1 -> P3 -> R2 -> P1, but no deadlock. P4 and P2 may release
the resources once it is done. Those resources can be allocated to other requesting
processes.

8. “If there is a cycle in the resource allocation graph, it may or may not be in
deadlock state”. Justify the statement with an example

Here cycle has occurred but since P4 and P2 may finish and release the resources the
cycle may be broken. Hence the deadlock may not occur.

9. The main memory has the following non contiguous free spaces: 50K, 100K,
150K, 200K and 250K. How will the OS allocate memory to a 260K process using
best fit method?
The main memory has non contiguous free spaces: 50K, 100K, 150K, 200K and 250K.
In order to allocate the memory to a 260K process using best fit method, the process
have to wait until there is an enough memory to satisfy the request.

10. Compare Logical address and Physical address.
Logical Address Physical Address

It is the virtual address generated
by CPU

The physical address is a location in a
memory unit.

Set of all logical addresses
generated by CPU in reference to a
program is referred as Logical
Address Space.

Set of all physical addresses
mapped to the corresponding
logical addresses is referred as
Physical Address.

The user can view the logical
address of a program.

The user can never view physical
address of program

The user uses the logical address
to access the physical address.

The user can not directly access
Physical address.

11. On a system using simple segmentation, compute the physical address for each of the
logical address is given in the following segment table. If the address generates a
segment fault, indicate so.

Segment number Base address Length of the segment
0 330 124
1 876 211
2 111 99
3 498 302

a) 0,99

Offset = 99
Segment length = 124
Segment = 0
Offset 99 is less than segment length 124
Starting position of segment 0 is 330
Physical address = offset + segment base

= 99 + 330 = 429

b) 2,78

Offset = 78
Segment length = 99
Segment = 2
Offset 78 is less than segment length 99
Starting position of segment 2 is 111
Physical address = offset + segment base

= 111 + 78 = 189
c) 1,265

Offset = 265
Segment length= 211
Segment = 1

Offset 265 is greater than segment length 211

This address results in a segment fault.

d) 3,222

Offset = 222
Segment length = 302
Segment = 3
Offset 222 is less than segment length 302
Starting position of segment 3 is 498
Physical address = offset + segment base

= 498 + 222 = 720
e) 0,111

Offset = 111
Segment length = 124
Segment = 0
Offset 111 is less than segment length 124
Starting position of segment 0 is 330
Physical address = offset + segment base

= 330 + 111 = 441

12. Interpret the situation when compaction cannot be applied for fragmentation.
Compaction is a process in which the free space is collected in a large memory chunk
to make some space available for processes. If relocation is static and is done at load
time, compaction cannot be done.

13. Differentiate FIFO and Second chance algorithm in page replacement
FIFO replaces in the order of reference of pages even if the page is referred after
their entry, but second chance algorithm gives a second chance to the oldest pages
if it is referred after its entry in the page table.

14. State the cause of thrashing? How does the system detect thrashing? Once it
detects thrashing, what can the system do to eliminate this problem?
Thrashing is caused by under allocation of the minimum number of pages required by a
process, forcing it to continuously page fault. The system can detect thrashing by
evaluating the level of CPU utilization as compared to the level of multiprogramming. It
can be eliminated by reducing the level of multiprogramming.

15. Why are page sizes always a power of 2?
 Paging is implemented by breaking up an address into a page and offset

number.
 It is most efficient to break the address into X page bits and Y offset bits, rather

than perform arithmetic on the address to calculate the page number and offset.
 Because each bit position represents a power of 2, splitting an address between

bits results in a page size that is a power of 2.

16. To reduce the page fault rate, some systems employ proportional allocation. If
such a system has a total of 64 frames and if two processes P1 and P2 of size 10
and 127 are ready for execution, how many frames would be allocated to each
process?

Formula: ai = si / S * m
m -> total number of available frames
a1 = 10 / (127 + 10) * 64 ≈ 5 frames
a2 = 127 / (127 +10) * 64 ≈ 59 frames

17. Let total available frames be 20 and the requirement of each process is given as
follows: P1 – 10; P2 – 5; P3 – 15; P4 – 20; Find the number of frames allocated to
each process using equal allocation and proportional allocation.

Frame Allocation = no of available frame / no of process
= 20 / 4
= 5 frames per process

Proportional allocation:
S = 10 + 5 + 15 + 20 = 50
P1 10/50 * 20 = 4
P2 5/50 * 20 = 2
P3 15/50 * 20 = 6
P4 20/50 * 20 = 8

18. Consider a logical address space of 64 pages of 1,024 words each, mapped
onto a physical memory of 32 frames.

a. How many bits are there in the logical address?
b. How many bits are there in the physical address?

a. There are 64 pages in logical address space
so 26 = 64 Therefore page size = 2n = 26

Page size = 6 bits
We have 1024 words 210 = 10 bits
So the total bits in logical address is 10 + 6= 16 bits

b. There are 32 frames in physical memory
so 25 = 32 Page size = 5 bits
We have 1024 words 210 = 10 bits
So the total bits in physical address is 10 + 5= 15 bits

19. Consider a paging hardware with a TLB. Assume that the entire page table and all
the pages are in the physical memory. It takes 10 milliseconds to search the TLB
and 80 milliseconds to access the physical memory. If the TLB hit ratio is 0.6,
calculate the effective memory access time (in milliseconds)

T(eff) = hit ratio * (TLB access time + Main memory access time) + (1 – hit ratio) *
(TLB access time + 2 * main memory time)
= 0.6*(10+80) + (1-0.6)*(10+2*80)
= 0.6 * (90) + 0.4 * (170)
= 122

20. Consider a paging system with the page table stored in memory. If a memory
reference takes 200 nanoseconds, how long does a paged memory reference
take? If we add associative registers and 75 percent of all page table references
are found in the associative registers, what is the effective memory reference
time? (Assume that finding a page table entry in the associative register takes
zero time, if the entry is there.)

A paged memory reference would take 400 nanoseconds; 200 nanoseconds to
access the page table and 200 nanoseconds to access the word in memory.
Effective memory reference time = 75% × TLB hit time + 25% × TLB miss time
= 75% × 200 ns + 25% × 400 ns
= 250 ns
TLB access time is 0 ns. So, when there is a TLB hit, we need only 200 ns to access
memory. When there is a TLB miss, we need to look up page table, stored in

memory, requiring 200 ns time. After that, we need another 200 ns time for actual
access.

21. Compare binary semaphore with general semaphore.
A binary semaphore may only take on the values 0 and 1. A general semaphore

may take on any integer value.

22. A shared variable x, initialized to zero, is operated on by four concurrent
processes W, X, Y, Z as follows. Each of the processes W and X reads x from
memory, increments by one, stores it to memory, and then terminates. Each of
the processes Y and Z reads x from memory, decrements by two, stores it to
memory, and then terminates. Each process before reading x invokes the P
operation (i.e., wait) on a counting semaphore S and invokes the V operation (i.e.,
signal) on the semaphore S after storing x to memory. Semaphore S is initialized
to two. What is the maximum possible value of x after all processes complete
execution?

Ans: 2

23. A process in operating systems needs a resource. Elucidate the protocol for
resource usage

Ans .
1) Requests a resource
2) Use the resource
3) Releases the resource

24. Person A and B have joint account with a balance amount of Rs.10,000. Person
‘A’ deposits Rs.3000 and person B withdraws Rs.2000. Demonstrate race
condition for the given situation

Sequence of operations of Person A Sequence of operations of Person B
Read account as acc1 Read account as acc2
acc1 = acc1 + 3000 acc2 = acc2 - 2000
account = acc1 account= acc2

If the order of execution is
T0: Person A: Read account as acc1 [acc1=10000]
T1: Person A: acc1 = acc1 + 3000 [acc1=13000]
T2: Person B: Read account as acc2 [acc2=10000]
T3: Person B: acc2 = acc2 – 2000 [acc2=8000]
T4: Person A: account = acc1 [account=13000]
T5: Person B: account = acc2 [account=8000]
The correct value should be 11000. But the final value is 8000 because of the order

of execution. Hence the race condition is demonstrated.

25. Mutual exclusion property is preserved in Peterson’s solution. Justify
Each process Pi enters its critical section only if either flag[j] == false or turn == i. Even
if both the processes have flag value of ‘1’ the turn value can be set by any one
process. Hence only one process will be inside the critical section thereby preserving
mutual exclusion.

26. Compare test and set & compare and swap functions
Test-and-set modifies the contents of a memory location and returns its old value as a
single atomic operation. Compare-and-swap atomically compares the contents of a
memory location to a given value and, only if they are the same, modifies the contents
of that memory location to a given new value.

27. Find the reason for spinlock in mutex locks
While a process is in its critical section, any other process that tries to enter its

critical section must loop continuously in the call to acquire(). Hence spinlock (busy
waiting) occurs.

28. Justify the need for priority inversion in processes.
"priority inversion" is a problematic scenario in scheduling in which a high priority

task is indirectly preempted by a lower priority task effectively "inverting" the relative
priorities of the two tasks. Under the policy of priority inheritance, whenever a high
priority task has to wait for some resource shared with an executing low priority task, the
low priority task is temporarily assigned the priority of the highest waiting priority task for
the duration of its own use of the shared resource.

29. Relate the situation of dining philosopher problem to process synchronization
It is a simple representation of the need to allocate limited resources among several

processes in a deadlock-free and starvation-free manner.

30. Compare monitor and semaphore
S.N
o

Semaphore Monitor

1 Semaphores is an integer
variable S.

Monitor is an abstract data
type.

2 Has to explicitly acquire a lock
before using a shared resource.

Automatically acquire the
necessary locks.

3 Using semaphores incorrectly
can lead to timing errors

The monitor construct ensures
that only one process at a time is
active within the monitor.

4

The x.signal() operation resumes
exactly one suspended process(x is
a condition variable. If no process is
suspended, then the signal()
operation has no effect;

signal() operation associated
with semaphores, will always
affects the state of the
semaphore.

31. Deadlock cannot be prevented by denying mutual exclusion in certain
situations. If the statement is true give reason.

The statement is true. We cannot prevent deadlocks by denying the mutual-exclusion
condition, because some resources are intrinsically nonsharable.

32. Race conditions are possible in many computer systems. Consider a banking
system that maintains an account balance with two functions: deposit
(amount) and withdraw (amount). These two functions are passed the amount

that is to be deposited or withdrawn from the bank account balance. Assume
that a husband and wife share a bank account. Concurrently, the husband
calls withdraw () function and the wife calls deposit (). Describe how a race
condition is possible and what might be done to prevent the race condition
from occurring.
Answer:
Assume the balance in the account is 250.00 and the husband calls withdraw (50)
and the wife calls deposit (100.)Obviously the correct value should be 300.00. Since
these two transactions will be serialized, the local value of balance for the husband
becomes 200.00, but before he can commit the transaction, the deposit (100)
operation takes place and updates the shared value of balance to 300.00. We then
switch back to the husband and the value of the shared balance is set to 200.00 –
obviously an incorrect value.

33. Elucidate the meaning of the term busy waiting. Can busy waiting be avoided
altogether? Explain your answer.
Answer:
While a process is in it critical section, any other process that tries to enter the
critical section must loop continuously in the entry code. Busy waiting wasted CPU
cycles that some other process might be able to use productively. This type of
semaphore is also called a spinlock because the process “spins” while waiting for
the lock. To overcome busy waiting, wait() and signal() semaphore operations are
redefined . In wait() operation, if semaphore value is not positive, then instead of
busy waiting, the process can block itself. block() operation places a process in
waiting queue associated with semaphore. A process that is blocked, waiting on
semaphore S, should be restarted when some other process executes a signal()
operation. The process restarted using wakeup() operation.

34. Is readers and writers problem a subset of producer’s consumer problem?
Justify.
Answer:
Readers and writers problem is not a subset of producer’s consumer problem but
both problems are about resource sharing. Producer’s consumer problem share
many resources between single producer and a single consumer which uses a
queue. Producer fills the queue at the tail and consumer empties it from head.
In reader writer problem, there is only a resource shared by one or more readers.
Two or more readers can access the resource concurrently between them but
absolutely a reader couldn’t access to resource with writer. One at a time can
access the resource and so there is total mutual exclusion when writer uses the
resource.

35. Demonstrate when a system is said to be in safe state.
Answer:
A safe state is one in which the available resources can be allocated to each
process in some order without causing deadlocks. A system is in a safe state only if
there exists a safe sequence. A sequence of processes < P1, P2, …, Pn> is a safe
sequence for the current allocation state. That is, when Pi terminates Pi+1 can

obtain its needed resources, and so on. If no such sequence exists, then the system
is in an unsafe state. An unsafe state may not always leads to deadlocks but has a
higher possibility of causing deadlocks.

36. Compare and contrast between internal and external fragmentation.
Internal Fragmentation External Fragmentation

Basic It occurs when fixed sized
memory blocks are allocated to
the processes.

It occurs when variable size
memory spaces are allocated
to the processes dynamically.

Occurrence When the memory assigned to
the process is slightly larger
than the memory requested by
the process this creates free
space in the allocated block
causing internal fragmentation.

When the process is removed
from the memory, it creates the
free space in the memory
causing external fragmentation.

Solution The memory must be
partitioned into variable sized
blocks and assign the best fit
block to the process.

Compaction, paging and
segmentation.

37. Interpret the situation when compaction cannot be applied for fragmentation
If relocation is static and is done at assembly or load time, compaction cannot be
done.

38. Differentiate FIFO and Second chance algorithm in page replacement
FIFO replaces in the order of reference of pages even if the page is referred after
their entry, but second chance algorithm gives a second chance to the oldest pages
if it is referred after its entry in the page table.

39. Depict the term wait_for_graph and construct the same for the following
resource allocation graph.

Wait_For_Graph:
• If all resource types has only single instance, then we can use a graph called

wait-for-graph, which is a variant of resource allocation graph.
• In wait-for graph

– Nodes are processes
– Pi Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle in the graph.
• If there is a cycle, there exists a deadlock

40. Under what circumstances user level threads are
better than the kernel level threads?
User-Level threads are managed entirely by the run-time system (user-level
library).The kernel knows nothing about user-level threads and manages them as if
they were single-threaded processes. User-Level threads are small and fast, each
thread is represented by a PC, register, stack, and small thread control block.
Creating a new thread, switching between threads, and synchronizing threads are
done via procedure call. i.e. no kernel involvement. User-Level threads are hundred
times faster than Kernel-Level threads. User level threads are simple to represent,
simple to manage and fast and efficient.

41. Distinguish between preemptive and non-preemptive Scheduling.
Under non preemptive scheduling once the CPU has been allocated to a process,
the process keeps the CPU until it releases the CPU either by terminating or
switching to the waiting state.
Preemptive scheduling can preempt a process which is utilizing the CPU in between
its execution and give the CPU to another process.

42. Define: Belady’s anomaly.
In computer storage, Belady's anomaly is the phenomenon in which increasing the
number of page frames results in an increase in the number of page faults for certain
memory access patterns. This phenomenon is commonly experienced when using
the first-in first-out (FIFO) page replacement algorithm.

43. Define demand paging in memory management.
In virtual memory systems, demand paging is a type of swapping in which pages of
data are not copied from disk to RAM until they are needed.

44. How the problem of external fragmentation can be solved.
Solution to external fragmentation:
1) Compaction: shuffling the fragmented memory into one contiguous location.
2) Virtual memory addressing by using paging and segmentation.

45. Outline about TLB.
A translation lookaside buffer (TLB) is a memory cache that is used to reduce the
time taken to access a user memory location. It is a part of the chip's memory-

management unit (MMU). The TLB stores the recent translations of virtual memory
to physical memory and can be called an address-translation cache.

46. What is Internal Fragmentation?
When the allocated memory may be slightly larger than the requested memory, the
difference between these two numbers is internal fragmentation.

47. What is the use of Valid-Invalid Bits in Paging?
When the bit is set to valid, this value indicates that the associated page is in the
process’s logical address space, and is thus a legal page. If the bit is said to invalid,
this value indicates that the page is not in the process’s logical address space. Using
the valid-invalid bit traps illegal addresses.

PART – B

1. Assume that the following processes arrive in the order with the length of the
CPU-burst time given in milliseconds.
Job Burst time

(ms)
Priority Arrival Time

A 5 2 0
B 3 2 2
C 25 1 4
D 7 4 6
E 15 3 7
a) Give the Gantt chart illustrating the execution of processes using FCFS,
Round Robin (quantum=2), preemptive priority and SRT scheduling.
b) Calculate the average waiting time and average turn-around time for each of
the above algorithm.

2. Consider the following snapshot of a system. Execute Bankers algorithm.
 Allocation Max Available
P0 1 2 0 1 2 3 4 3 2 3 3 2
P1 2 2 0 1 3 4 2 4
P2 4 5 7 1 5 7 8 5
P3 1 1 0 0 2 2 0 0
P4 2 3 4 4 3 4 5 5
i) What is the content of need matrix
ii) Is the system in a safe state? If it is safe, write the safe sequence.
iii) If a request from p1 arrives for (1, 2, 1, 0) can the request be immediately
granted? If granted, write the sequence of the process.

3. Describe various techniques for structuring the page table in a page memory
management scheme.

4. On a system using simple segmentation, compute the physical address for
each of the logical address is given in the following segment table. If the
address generates a segment fault, indicate so.

Segment number Base address Length of the segment
0 330 124
1 876 211
2 111 99
3 498 302

i) 0, 99
ii) 2, 78
iii) 1, 265
iv) 3, 222
v) 0, 111

5. Explain the Banker's algorithm for deadlock avoidance.
6. When do page fault occurs? Describe the actions taken by the operating

system when a page fault occurs.
7. Find the number of page faults for the following reference string

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6
Let the number of frames be 3 & 4 and initially all are empty using following
algorithms
(a)First In First Out (FIFO)
(b)Least Recently Used (LRU)
(c)Optimal replacement

8. P1, P2, P3 given in the below table, arrives for execution in the given arrival
time and Burst Time, determine the Average Waiting time and Average
turnaround time using
(a)First Come First Serve
(b)Shortest Job First
(c) Shortest Remaining Time
(d)Round Robin Scheduling(Quantum = 3)

Process Arrival
Time Priority Burst

time
P0 0 1 5
P1 1 2 3
P2 2 1 8
P3 3 3 6

9. Consider the following snapshot of a system. Execute Banker’s algorithm and
derive the following.

Proce
ss

Allocation Maximum Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

a) Find the Contents of Need matrix
b) Is the system in safe state? Safe sequence if the system is safe.
c) Can the request made by process P1 (0, 4, 2, 0) be granted immediately?

10. Describe the various classic problems of synchronization with examples.
11. Given six memory partitions of 300 KB, 600 KB, 350 KB, 200KB, 750KB,and

125KB(in order), how would the first-fit, best-fit, and worst-fit Main Memory
algorithms place processes of size 115KB, 500KB, 358KB, 200KB,and
375KB(in order)? Rank the algorithms in terms of how efficiently they use
memory.

12. Demonstrate the steps in handling page fault with a neat sketch.
13. Consider the following page reference string:

A, B, C, D, A, B, E, A, B, C, D, E
How many page faults would occur for the following replacement algorithms
with 3 and 4 frames?

i) FIFO
ii) LRU
iii) Optimal

Whether this reference string suffers from Belady’s anomaly?
14. Explain in detail the various memory allocation Techniques.
15. Design a solution for Dining Philosopher problem using Monitor.
16. Consider the following snapshot of a system. Execute Bankers algorithm.

 Allocation Max Available
P0 1 2 0 1 2 3 4 3 2 3 3 2
P1 2 2 0 1 3 4 2 4
P2 4 5 7 1 5 7 8 5
P3 1 1 0 0 2 2 0 0
P4 2 3 4 4 3 4 5 5

i) What is the content of need matrix
ii) Is the system in a safe state? If it is safe, write the safe sequence.
iii) If a request from p1 arrives for (1, 2,1, 0) can the request be immediately
granted? If granted, write the sequence of the process.

17. Write the functions for producer consumer in bounded buffer to implement
critical section. Clearly justify why deadlocks cannot arise in a bounded buffer
producers–consumers system.

18. Apply semaphore to solve Dining philosopher problem using semaphore
deduce its disadvantages.

19. Given five memory partitions of 100Kb, 500Kb, 200Kb, 300Kb, 600Kb (in order),
how would the first-fit, best-fit, and worst-fit algorithms place processes of
212 Kb, 417 Kb, 112 Kb, and 426 Kb (in order)? Which algorithm makes the
most efficient use of memory?

20. Depict the term synchronization. Discuss the two process solution that
satisfies the properties of critical section problem. Explain how semaphore
can used as synchronization tool.

21. Consider a coke machine that has 10 slots. The producer is the delivery
person and consumer is the student using the machine. It uses the following
three semaphores :
Semaphore mutex
Semaphore fullBuffer /* Number of filled slots */

Semaphore emptyBuffer /* Number of empty slots */
The following operations are available on the semaphores: wait(semaphore s),
signal(semaphore s).
Given functions delivery_person() and student():
i) What will be the initial values of the semaphores?
ii) Write a solution that guarantees the mutual exclusion and has no
deadlocks.
iii) If the two wait() functions inside the student() section are interchanged [i.e.,
wait(fullbuffer) and wait(mutex) are interchanged], will your solution to the
previous question will still be correct ? If not, explain your reason?

22. Consider the traffic deadlock depicted in the Figure given below.

a) Show that the four necessary conditions for deadlock hold in this example.
b) State a simple rule for avoiding deadlocks in this system.

23. A garden has four spades and three wheelbarrows.
Four gardeners are working:
- Gardener 1 needs to use two spades and two wheelbarrows.
- Gardener 2 needs to use two spades and one wheelbarrow.
- Gardener 3 needs to use one spades and two wheelbarrows.
- Gardener 4 needs to use three spades and three wheelbarrows.
At a certain point in time:
- Gardener 1 is using a wheelbarrow
- Gardener 2 is using a spade
- Gardener 3 is using a wheelbarrow
- Gardener 4 is using two spades
(a) Draw a resource allocation graph for this system
(b) Is the system in a safe state? Prove using the banker’s algorithm.
(c) Gardener 1 wants to use another wheelbarrow. Should he be allowed to
do this? Justify.

24. Explain the Banker's algorithm for deadlock avoidance.

