
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – III Storage Management

Topic: Memory Management : Paging

Paging

• Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available
• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and
load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 2

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page

table which contains base address of each page in
physical memory

• Page offset (d) – combined with base address to
define the physical memory address that is sent to
the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 3

Paging Hardware

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

4

Paging Model of Logical and Physical Memory

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

5

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

6

Paging (Cont.)

• Calculating internal fragmentation
• Page size = 2,048 bytes
• Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes
• Worst case fragmentation = 1 frame – 1 byte
• On average fragmentation = 1 / 2 frame size
• So small frame sizes desirable?
• But each page table entry takes memory to track
• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different
• By implementation process can only access its own

memory

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 7

Free Frames

Before allocation After allocation

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

8

Implementation of Page Table

• Page table is kept in main memory
• Page-table base register (PTBR) points to the

page table
• Page-table length register (PTLR) indicates size

of the page table
• In this scheme every data/instruction access

requires two memory accesses
• One for the page table and one for the data /

instruction

• The two memory access problem can be solved
by the use of a special fast-lookup hardware
cache called associative memory or translation
look-aside buffers (TLBs)

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 9

Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers
(ASIDs) in each TLB entry – uniquely
identifies each process to provide address-
space protection for that process
• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB
for faster access next time
• Replacement policies must be considered

• Some entries can be wired down for permanent
fast access

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 10

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 11

Paging Hardware With TLB

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

12

Effective Access Time

• Associative Lookup =  time unit
• Can be < 10% of memory access time

• Hit ratio = 
• Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative registers

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory
access

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory
access
• EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider more realistic hit ratio ->  = 99%,  = 20ns for TLB
search, 100ns for memory access
• EAT = 0.99 x 100 + 0.01 x 200 = 101ns

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 13

Memory Protection

• Memory protection implemented by associating
protection bit with each frame to indicate if
read-only or read-write access is allowed
• Can also add more bits to indicate page execute-only,

and so on

• Valid-invalid bit attached to each entry in the
page table:
• “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page

• “invalid” indicates that the page is not in the process’
logical address space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 14

Valid (v) or Invalid (i) Bit In A Page Table

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

15

Shared Pages

• Shared code
• One copy of read-only (reentrant) code shared

among processes (i.e., text editors, compilers,
window systems)

• Similar to multiple threads sharing the same
process space

• Also useful for interprocess communication if
sharing of read-write pages is allowed

• Private code and data
• Each process keeps a separate copy of the code

and data
• The pages for the private code and data can

appear anywhere in the logical address space

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 16

Shared Pages Example

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Paging

17

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging

18

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Paging 19

