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Paging

• Physical  address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available
• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and 
load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation
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Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page 

table which contains base address of each page in 
physical memory

• Page offset (d) – combined with base address to 
define the physical memory address that is sent to 
the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n
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Paging Hardware
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Paging Model of Logical and  Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

• Calculating internal fragmentation
• Page size = 2,048 bytes
• Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes
• Worst case fragmentation = 1 frame – 1 byte
• On average fragmentation = 1 / 2 frame size
• So small frame sizes desirable?
• But each page table entry takes memory to track
• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different
• By implementation process can only access its own 

memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

• Page table is kept in main memory
• Page-table base register (PTBR) points to the 

page table
• Page-table length register (PTLR) indicates size 

of the page table
• In this scheme every data/instruction access 

requires two memory accesses
• One for the page table and one for the data / 

instruction

• The two memory access problem can be solved 
by the use of a special fast-lookup hardware 
cache called associative memory or translation 
look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers 
(ASIDs) in each TLB entry – uniquely 
identifies each process to provide address-
space protection for that process
• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB 
for faster access next time
• Replacement policies must be considered

• Some entries can be wired down for permanent 
fast access
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Associative Memory

• Associative memory – parallel search 

• Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

• Associative Lookup =  time unit
• Can be < 10% of memory access time

• Hit ratio = 
• Hit ratio – percentage of times that a page number is found in the 

associative registers; ratio related to number of associative registers

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory 
access

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory 
access
• EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider more realistic hit ratio ->   = 99%,  = 20ns for TLB 
search, 100ns for memory access
• EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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Memory Protection

• Memory protection implemented by associating 
protection bit with each frame to indicate if 
read-only or read-write access is allowed
• Can also add more bits to indicate page execute-only, 

and so on

• Valid-invalid bit attached to each entry in the 
page table:
• “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal 
page

• “invalid” indicates that the page is not in the process’
logical address space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) Bit In A Page Table
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Shared Pages

• Shared code
• One copy of read-only (reentrant) code shared 

among processes (i.e., text editors, compilers, 
window systems)

• Similar to multiple threads sharing the same 
process space

• Also useful for interprocess communication if 
sharing of read-write pages is allowed

• Private code and data
• Each process keeps a separate copy of the code 

and data
• The pages for the private code and data can 

appear anywhere in the logical address space
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Shared Pages Example
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