
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – III Storage Management

Topic: Memory Management : Background

Memory Management

• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of the Page Table

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Background

• Program must be brought (from disk) into memory
and placed within a process for it to be run

• Main memory and registers are only storage CPU can
access directly

• Memory unit only sees a stream of addresses + read
requests, or address + data and write requests

• Register access in one CPU clock (or less)

• Main memory can take many cycles, causing a stall

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct
operation

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Base and Limit Registers

• A pair of base and limit registers define the logical address
space

• CPU must check every memory access generated in user mode
to be sure it is between base and limit for that user

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Hardware Address Protection

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Address Binding

• Programs on disk, ready to be brought into memory to execute form an input queue

• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000

• How can it not be?

• Further, addresses represented in different ways at different stages of a program’s
life

• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”

• Linker or loader will bind relocatable addresses to absolute addresses

• i.e. 74014

• Each binding maps one address space to another

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three different
stages
• Compile time: If memory location known a priori,

absolute code can be generated; must recompile code
if starting location changes

• Load time: Must generate relocatable code if memory
location is not known at compile time

• Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another
• Need hardware support for address maps (e.g., base and

limit registers)

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Multistep Processing of a User Program

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management :
Background

Logical vs. Physical Address Space

• The concept of a logical address space that is
bound to a separate physical address space is
central to proper memory management
• Logical address – generated by the CPU; also referred

to as virtual address
• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

• Logical address space is the set of all logical
addresses generated by a program

• Physical address space is the set of all physical
addresses generated by a program

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to
physical address

• Many methods possible, covered in the rest of this
chapter

• To start, consider simple scheme where the value in
the relocation register is added to every address
generated by a user process at the time it is sent to
memory
• Base register now called relocation register
• MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it
never sees the real physical addresses
• Execution-time binding occurs when reference is made to

location in memory
• Logical address bound to physical addresses

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

Dynamic relocation using a relocation register

 Routine is not loaded until it is

called

 Better memory-space utilization;

unused routine is never loaded

 All routines kept on disk in

relocatable load format

 Useful when large amounts of

code are needed to handle

infrequently occurring cases

 No special support from the

operating system is required

 Implemented through program

design

 OS can help by providing libraries

to implement dynamic loading

19CSB201 – Operating Systems/ Unit-III/ Storage Management/
Memory Management : Background

Dynamic Loading

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management :
Background

To obtain better memory-space utilization, we can use dynamic
loading.

With dynamic loading, a routine is not loaded until it is called. All
routines are kept on disk in a relocatable load format. The main
program is loaded into memory and is executed. When a routine needs
to call another routine, the calling routine first checks to see whether
the other routine has been loaded. If it has not, the relocatable linking
loader is called to load the desired routine into memory and to update
the program’s address tables to reflect this change. Then control is
passed to the newly loaded routine.

Dynamic Linking

• Static linking – system libraries and program code
combined by the loader into the binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate
memory-resident library routine

• Stub replaces itself with the address of the routine, and
executes the routine

• Operating system checks if routine is in processes’ memory
address
• If not in address space, add to address space

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

• Consider applicability to patching system libraries
• Versioning may be needed

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-III/ Storage Management/ Memory Management
: Background

