
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II Process Scheduling And Synchronization

Topic: CPU Scheduling : Algorithm Evaluation

Algorithm Evaluation

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

The first problem is defining the criteria to be used in selecting an
algorithm.

Criteria are often defined in terms of CPU utilization, response time, or
throughput.

To select an algorithm, we must first define the relative importance of
these elements.

Our criteria may include several measures,

such as these:

• Maximizing CPU utilization under the constraint that the
maximum response time is 1 second

• Maximizing throughput such that turnaround time is (on
average) linearly proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

Analytic evaluation

One major class of evaluation methods is analytic evaluation.

Analytic evaluation uses the given algorithm and the system workload
to produce a formula or number to evaluate the performance of the
algorithm for that workload.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

1.Deterministic Modeling

• Deterministic modeling is one type of analytic evaluation.

• This method takes a particular predetermined workload and defines
the performance of each algorithm for that workload.

• Deterministic modeling is simple and fast.

• It gives us exact numbers, allowing us to compare the algorithms.

• However, it requires exact numbers for input, and its answers apply
only to those cases.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

For example, assume that we have the workload shown below. All five
processes arrive at time 0, in the order given, with the length of the CPU
burst given in milliseconds:
Process Burst Time
P1 10
P2 29
P3 3
P4 7
P5 12
Consider the FCFS, SJF, and RR (quantum = 10 milliseconds)
scheduling algorithms for this set of processes. Which algorithm would
give the minimum average waiting time?

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

The waiting time is 0 milliseconds for process P1 , 10 milliseconds for
process P2 , 39 milliseconds for process P3 , 42 milliseconds for process
P4 , and 49 milliseconds for process P5 .

Thus, the average waiting time is (0 + 10 + 39 + 42 + 49)/5 = 28
milliseconds

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

The waiting time is 10 milliseconds for process P1 , 32 milliseconds for
process P2 , 0 milliseconds for process P3 , 3 milliseconds for process
P4 , and 20 milliseconds for process P5 . Thus, the average waiting time
is (10 + 32 + 0 + 3 + 20)/5 = 13 milliseconds.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

• The waiting time is 0 milliseconds for process P1 , 32 milliseconds for
process P2 , 20 milliseconds for process P3 , 23 milliseconds for
process P4 , and 40 milliseconds for process P5 . Thus, the average
waiting time is (0 + 32 + 20 + 23 + 40)/5 = 23 milliseconds.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

We can see that, in this case, the average waiting time obtained with the
SJF policy is less than half that obtained with FCFS scheduling; the RR
algorithm gives us an intermediate value.

SJF policy will always result in the minimum waiting time

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

2.Queueing Models

• The distribution of CPU and I/O bursts.

• These distributions can be measured and then approximated or simply
estimated.

• The result is a mathematical formula describing the probability of a
particular CPU burst. Commonly, this distribution is exponential and
is described by its mean.

• Possible to compute the average throughput, utilization, waiting time,
and so on for most algorithms.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

The computer system is described as a network of servers. Each server
has a queue of waiting processes. The CPU is a server with its ready
queue, as is the I/O system with its device queues. Knowing arrival rates
and service rates, we can compute utilization, average queue length,
average wait time, and so on. This area of study is called queueing-
network analysis.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

As an example, let n be the average queue length (excluding the
process being serviced), let W be the average waiting time in the
queue, and let be the average arrival rate for new processes in
the queue (such as three processes per second). We expect that during
the time W that a process waits, new processes will arrive in the
queue. If the system is in a steady state, then the number of processes
leaving the queue must be equal to the number of processes that arrive.
Thus,

This equation, known as Little’s formula, is particularly useful because
it is valid for any scheduling algorithm and arrival distribution.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

3.Simulations

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

The data to drive the simulation can be generated in several ways. The
most common method uses a random-number generator that is
programmed to generate processes, CPU burst times, arrivals,
departures, and so on, according to probability distributions.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

A distribution-driven simulation may be inaccurate, however,
because of relationships between successive events in the real system.
The frequency distribution indicates only how many instances of each
event occur; it does not indicate anything about the order of their
occurrence.

To correct this problem, we can use trace tapes. We create a trace tape
by monitoring the real system and recording the sequence of actual
events. We then use this sequence to drive the simulation. Trace tapes
provide an excellent way to compare two algorithms on exactly the
same set of real inputs. This method can produce accurate results for its
inputs.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

Simulations can be expensive, often requiring hours of
computer time.

A more detailed simulation provides more accurate results,
but it also takes more computer time.

In addition, trace tapes can require large amounts of storage
space.

Finally, the design, coding, and debugging of the simulator
can be a major task.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

4.Implementation

Even a simulation is of limited accuracy. The only completely
accurate way to evaluate a scheduling algorithm is to code it up, put it
in the operating system, and see how it works. This approach puts the
actual algorithm in the real system for evaluation under real operating
conditions.

The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating
system to support it (along with its required data structures) but also in
the reaction of the users to a constantly changing operating system.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ CPU
Scheduling - Algorithm Evaluation/ Dr S Angel

