
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II Process Scheduling And Synchronization

Topic: Process Synchronization: The Critical-Section Problem

Process Synchronization

Process Synchronization is the coordination of execution of
multiple processes in a multi-process system to ensure that
they access shared resources in a controlled and predictable
manner.

It aims to resolve the problem of race conditions and other
synchronization issues in a concurrent system.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 2

Race Condition

• When more than one process is executing the same code or
accessing the same memory or any shared variable in that
condition there is a possibility that the output or the value of
the shared variable is wrong.

• Several processes access and process the manipulations over
the same data concurrently, then the outcome depends on
the particular order in which the access takes place.

• A race condition is a situation that may occur inside a critical
section.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 3

The Critical-Section Problem

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/Process
Synchronization: The Critical-Section Problem/ Dr S Angel 4

Each process has a segment of code, called a critical section, in which
the process may be changing common variables, updating a table,
writing a file, and so on.

Consider a system consisting of n processes {P0 , P1 , ..., Pn−1 }.

The important feature of the system is that, when one process is
executing in its critical section, no other process is allowed to execute in
its critical section.

That is, no two processes are executing in their critical sections at
the same time.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 5

The critical-section problem is to design a protocol that the processes
can use to cooperate.

• Each process must request permission to enter its critical section.

• The section of code implementing this request is the entry section.

• The critical section may be followed by an exit section.

• The remaining code is the remainder section.

The general structure of a typical process Pi is shown in Figure 5.1.

The entry section and exit section are enclosed in boxes to highlight
these important segments of code.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 6

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection cannot
be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 7

Approaches to handle critical sections

Two general approaches are used to handle critical sections in operating
systems: preemptive kernels and non preemptive kernels.

A preemptive kernel allows a process to be preempted while it is
running in kernel mode.

A non preemptive kernel does not allow a process running in kernel
mode to be preempted.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 8

• Obviously, a non preemptive kernel is essentially free from race
conditions on kernel data structures, as only one process is active in
the kernel at a time.

• Preemptive kernels are especially difficult to design for SMP
architectures, since in these environments it is possible for two
kernel-mode processes to run simultaneously on different processors.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 9

1.Peterson’s Solution

• We illustrate a classic software-based solution to the critical-section
problem known as Peterson’s solution.

• Peterson’s solution is restricted to two processes that alternate
execution between their critical sections and remainder sections. The
processes are numbered P0 and P1 . For convenience, when
presenting Pi , we use P j to denote the other process; that is, j equals
1 − i

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 10

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 11

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 12

2. Synchronization Hardware

• Hardware instructions that are available on many systems and
showing how they can be used effectively in solving the critical-
section problem

• All these solutions are based on the premise of locking —that is,
protecting critical regions through the use of locks.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 13

Multi-processor environment

• Hardware instructions that allow us either to test and modify the
content of a word or to swap the contents of two words atomically

• we abstract the main concepts behind these types of instructions by
describing the test and set() and compare and swap() instructiaons.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 14

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 15

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 16

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 17

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 18

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 19

3.Mutex Locks

• A process must acquire the lock before entering a critical section; it
releases the lock when it exits the critical section.

• We use the mutex lock to protect critical regions and thus prevent
race conditions.

• This type of mutex lock is also called a spinlock , because the process
“spins” while waiting for the lock to become available.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 20

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 21

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel

22

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and
Synchronization/Process Synchronization: The Critical-Section Problem/ Dr S Angel 23

