Sa n'x

&

C &= X2 -
2 --".:”’V,_, 0

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 — OPERATING SYSTEMS
Il YEAR/ IV SEMESTER
UNIT — Il Process Scheduling And Synchronization

Topic: Deadlock: System Model & Characterization

LI rrurions

e Dead
e Dead
Dead

OC
OC
OC

Deadlocks

System Model
Deadlock Characterization
Methods for Handling Deadlocks

K Prevention
kK Avoidance

K Detection

Recovery from Deadlock

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization

> r
CLETrrunions

C ¢ BT >
{"".' - -

= Qo

A process requests resources; if the resources are not available at that
time, the process enters a waiting state.

Sometimes, a waiting process is never again able to change state,
because the resources it has requested are held by other waiting
processes. This situation is called a deadlock.

19CSB201 — Operating Systems/ Unit-1l/ Deadlock: System Model & Characterization 3

System Model

SHTIronls

 System consists of resources

* Resource types R, Ry, . . ., R,
CPU cycles, memory space, /0 devices

* Each resource type R, has W, instances.

* Each process utilizes a resource as follows:
* request
* use
* release

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 4

* A process must request a resource before using it and must release
the resource after using it.

* A process may request as many resources as it requires to carry out
its designated task.

* Obviously, the number of resources requested may not exceed the
total number of resources available in the system. In other words, a
process cannot request three printers if the system has only two.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 5

SHTIronls

@2% Deadlock Characterization

Necessary Conditions

Deadlock can arise if four conditions hold simultaneously.
* Mutual exclusion: only one process at a time can use a
resource

* Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

* No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

* Circular wait: there exists a set {P,, P, .., P,} of waiting
processes such that P,is waiting for a resource that is held by
P,, P, is waiting for a resource that is held by P,, ..., P,_; is
waiting for a resource that is held by P_, and P, is waiting for a
resource that is held by P,.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 6

“@% Resource-Allocation Graph oy =
A set of vertices V and a set of edges E.

* V is partitioned into two types:

« P={P, P,, .., P.}, the set consisting of all the active processes in
the system

* R={R,, R,, ..., R}, the set consisting of all resource types in the
system

* request edge — directed edge P,— R,

* assignment edge — directed edge R, — P,

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 7

~» L.
I oS

Ry=1
ce

@ Resource-Allocation Graph (Cont.)

@

* Resource Type with 4 instances

* Process

O O
O O

* P, requests instance of R; _,

oo

T | OO

* P;is holding an instance of R, @

| E1 [
O
R

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 8

L,

Example of a Resource Allocation Graph >

Tryronls

e Thesets P, R, and E:
o P={P;, B, Ps}

R, A
® ® o R={Ry, Ry, R3, R4}
\ \

oE={P1—> R, P,—> R3,Ri > P, R > P, R, > P;, R3 —> P3}

@ e e Resource instances:
o One instance of resource type Ry

o Two instances of resource type R;

\./ o One instance of resource type Rj
e ° o Three instances of resource type R4
® * Process states:
R> » : : . W
o Process Pj is holding an instance of resource type R, and is waiting for

R, an instance of resource type R;.

o Process P, is holding an instance of R; and an instance of R; and is
waiting for an instance of Rs.

o Process P is holding an instance of Rs.
19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 9

-~

Resource Allocation Graph With A Deadlock)’ o

@ (=]

@

R, ®
Ry

P1—> R1—> P2—-> R3—> P3—> Rz—é P]
Pz —> R3 = P3 — Rz b P2
19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model

o 10
& Characterization

Graph With A Cycle But No Deadlock

STl

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model

11
& Characterization

Basic Facts

* If graph contains no cycles = no deadlock

* If graph contains a cycle =
* if only one instance per resource type, then deadlock
e if several instances per resource type, possibility of deadlock

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 12

Methods for Handling Deadlocks

SHTIronls

* Ensure that the system will never enter a deadlock state:
* Deadlock prevention
* Deadlock avoidence

* Allow the system to enter a deadlock state and then
recover

* |gnore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 13

LI rrrurions

-
-:_’_¢

e we can deal with the deadlock problem in one of three ways:

e \We can use a protocol to prevent or avoid deadlocks, ensuring that
the system will never enter a deadlocked state.

e We can allow the system to enter a deadlocked state, detect it, and
recover.

e \We can ignore the problem altogether and pretend that deadlocks
never occur in the system.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 14

<@ Deadlock Prevention I

For a deadlock to occur, each of the four necessary conditions must hold. By
ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock.

Restrain the ways request can be made

 Mutual Exclusion — not required for sharable resources (e.g.,
read-only files); must hold for non-sharable resources

* Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

e Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none allocated to it.

* Low resource utilization; starvation possible

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 15

@ Deadlock Prevention (Cont.) D! S

* No Preemption —

* |f a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being
held are released

* Preempted resources are added to the list of resources for which the
process is waiting

* Process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting

 Circular Wait — impose a total ordering of all resource types, and
require that each process requests resources in an increasing order
of enumeration

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 16

s

L .’vzl-

¢mo

Deadlock Example

STl

G\

LA

/* thread one runs in this function */

void *do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex) ;

/** * Do some work */
pthread mutex unlock(&second mutex) ;

pthread mutex unlock(&first mutex);
pthread exit (0);

}

/* thread two runs in this function */

void *do work two(void *param)
{

pthread mutex lock(&second mutex) ;
pthread mutex lock(&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex);

pthread exit (0);

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 17

sT ;--:{T‘;

-~)

Deadlock Example with Lock Ordering O *

CLErrunions

—

void transaction (Account from, Account to, double amount)

{
mutex lockl, lock?2;

Transactions 1 and 2 execute concurrently.
Transaction 1 transfers $25 from account A to account
B, and Transaction 2 transfers $50 from account B to
lockl = get lock(from); account A

lock2 = get lock(to);
acquire (lockl);

one thread might invoke
acquire (lock?2);

. transaction(checking account, savings account, 25);
withdraw (from, amount);
deposit (to, amount);

release (lock2) ; and another might invoke

release (lockl); transaction(savings account, checking account, 50);

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 18

“@% Deadlock Avoidance s

Requires that the system has some additional a priori information
available

* Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need

* The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

* Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 19

<@ Safe State R}

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

* System is in safe state if there exists a sequence <P,, P,, ..., P,> of
ALL the processes in the systems such that for each P, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the P, with j </

* That is:
* If P, resource needs are not immediately available, then P; can wait until

all P; have finished

* When P.is finished, P; can obtain needed resources, execute, return
allocated resources, and terminate

* When P, terminates, P;,, can obtain its needed resources, and so on

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 20

@2 Basic Facts
* If a system is in safe state = no deadlocks

* If a system is in unsafe state = possibility of deadlock

* Avoidance = ensure that a system will never enter an unsafe
state.

* A state Is safe If the system can allocate resources to each
process (up to its maximum) in some order and still avoid a
deadlock. More formally, a system Is in a safe state only if
there exists a safe sequence.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization

> 4
Lo

21

ﬂ? "

S
o
L.‘

<,

@&: safe, Unsafe, Deadlock State

nm

unsafe
deadlock

safe

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model

22
& Characterization

Avoidance Algorithms

STl

* Single instance of a resource type
* Use a resource-allocation graph

* Multiple instances of a resource type
* Use the banker’s algorithm

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 23

) B

d)

*93% Resource-Allocation Graph Algorithm

* Claim edge P; — R;indicated that process P, may request
resource R; represented by a dashed line

* Claim edge converts to request edge when a process requests
a resource

* Request edge converted to an assighment edge when the
resource is allocated to the process

 When a resource is released by a process, assignment edge
reconverts to a claim edge

e Resources must be claimed a priori in the system

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 24

; L -
" Resource-Allocation Graph e

R'I

“‘ "'
“ P
\‘ﬁ "'
F
Ao
19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model 55

& Characterization

N a..
»
SHTY IS

Unsafe State In Resource-Allocation Graph

A

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model

L 2
& Characterization 6

C ¢ e
&E - -)

) B

d)

Resource-Allocation Graph Algorithm D
* Suppose that process P; requests a resource R;

* The request can be granted only if converting the request edge to
an assignment edge does not result in the formation of a cycle in
the resource allocation graph

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 27

@f Banker’s Algorithm
* Multiple instances
* Each process must a priori claim maximum use
* When a process requests a resource it may have to wait

* When a process gets all its resources it must return them in
a finite amount of time

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization

T
LTI IO S

28

Data Structures for the Banker's Algorithm

CLLSTITYTIONS

o

:;’F

CE O u,'
o

Let n = number of processes, and m = number of resources types.

* Available: Vector of length m. If available [j] = k, there are k
instances of resource type R; available

* Max: n x m matrix. If Max [i,j] = k, then process P, may request
at most k instances of resource type R;

* Allocation: n x m matrix. If Allocationli,j] = k then P; is currently
allocated k instances of R;

* Need: nx m matrix. If Need|i,j] = k, then P, may need k more
instances of R;to complete its task

Need [i,j] = Max[i,jl1 — Allocation [i,j]

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 29

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish [i] = false fori=0,1, ...,n-1

2. Find an i such that both:
(a) Finish [i] = false
(b) Need. < Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finishli] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 30

o ¢ GHE S

Resource-Request Algorithm for Process P, >

LI rrrurions

Request; = request vector for process P;. If Request;|[j] = k then
process P; wants k instances of resource type R;

1. If Request; < Need; go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise P; must wait, since
resources are not available

3. Pretend to allocate requested resources to P; by modifying the state as
follows:

Available = Available — Request;
Allocation; = Allocation; + Request;
Need; = Need; — Request;
e |f safe = the resources are allocated to P;
e If unsafe = P; must wait, and the old resource-allocation state is restored

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 31

@ Example of Banker's Algorithm D! S
* 5 processes P, through P,;
3 resource types:
A (10 instances), B (5instances), and C (7 instances)
* Snapshot at time T,

Allocation Max Available
ABC ABC ABC

P, 010 753 332
P, 200 322
P, 302 902
P, 211 222
P, 002 433

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 32

Y v
ol

* The content of the matrix Need is defined to be Max — Allocation

g
CLErITITions

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

* The system is in a safe state since the sequence < P,, P, P,, P,, P>
satisfies safety criteria

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 33

¢QéfE xample: P, Request (1,0,2)

* Check that Request < Available (that s, (1,0,2) <(3,3,2) = true
Allocation Need Available
ABC ABC ABC

P, 010 743 230
P, 302 020

P, 302 600

P, 211 011

P, 002 431

* Executing safety algorithm shows that sequence < P,, P;, P,, P,, P,> satisfies
safety requirement

* Can request for (3,3,0) by P, be granted?

* Can request for (0,2,0) by P, be granted?

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 34

Deadlock Detection

* Allow system to enter deadlock state

* Detection algorithm

* Recovery scheme

The system may provide:

* An algorithm that examines the state of the system to determine
whether a deadlock has occurred

* An algorithm to recover from the deadlock

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization

"

P
CLErITITions

35

‘&gﬁ Single Instance of Each Resource Type
* Maintain wait-for graph

* Nodes are processes

* P,— P; if P;is waiting for P;

* Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

* An algorithm to detect a cycle in a graph requires an order of n?
operations, where n is the number of vertices in the graph

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 36

N a..
>
SHTY IS

Resource-Allocation Graph and Wait-for Graph

A, Az
(a) (b)

Resource-Allocation Graph Corresponding wait-for graph

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model

L 7
& Characterization 3

Several Instances of a Resource Type =

57 //.///J &)

-
-;’,¢

* Available: A vector of length m indicates the number of
available resources of each type

e Allocation: An n x m matrix defines the number of resources
of each type currently allocated to each process

* Request: An n x m matrix indicates the current request of
each process. If Request [i]l[j] = k, then process P; is
requesting k more instances of resource type R;.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 38

, g
CLLSTITITIONtS

<@ Detection Algorithm :

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:
(a) Work = Available

(b) Fori=1,2, ..., n, if Allocation;# 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finishli] == false
(b) Request; < Work

If no such i exists, go to step 4

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 39

=] X< . .
*Qﬁ Detection Algorithm (Cont.) R -

3. Work = Work + Allocation;
Finish[i] = true
go to step 2
4, If Finish[i] == false, for some i, 1 <i< n, then the system is in

deadlock state. Moreover, if lesh[l false then P; is deadlocked

Algorithm requires an order of O(m x n?) operations to detect whether the system is in
deadlocked state

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 40

@ﬁ Example of Detection Algorithm

* Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

* Snapshot at time T,
Allocation Request Available

ABC ABC ABC

P, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002

* Sequence <Py, P,, P;, P,, P,> will result in Finish[i] = true for all i

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 41

L¢eﬁ E Xam p | e (CO nt .) (;&ffrzﬂws

* P, requests an additional instance of type C
Request

ABC

000

202

001

100

002

L O

©V U U U T
w N

I

 State of system?

* Can reclaim resources held by process P,, but insufficient resources to fulfill other
processes requests

* Deadlock exists, consisting of processes P,, P,, P;, and P,

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 4?2

Detection-Algorithm Usage D ! S

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?

* How many processes will need to be rolled back?
e one for each disjoint cycle

* If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not be
able to tell which of the many deadlocked processes “caused”
the deadlock.

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 43

‘*9@ Recovery from Deadlock: Process Termination e

2

d)

* Abort all deadlocked processes

* Abort one process at a time until the deadlock cycle is eliminated

* In which order should we choose to abort?

A

Priority of the process

. How long process has computed, and how much longer to completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated
|s process interactive or batch?

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 44

-
ce éﬁ_

‘*’///.///J &)

Recovery from Deadlock: Resource Preemption o

* Selecting a victim — minimize cost

* Rollback — return to some safe state, restart process for
that state

e Starvation — same process may always be picked as victim,
include number of rollback in cost factor

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 45

\
»
| &

iy -
C ¢ BT >
&E - -)

."_',L:r/‘.”;.w;

REFERENCES G

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)
T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010
REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.
R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th
Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems — Internals and Design Principles”, 7th Edition, Prentice
Hall, 2011

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 46

~—

Trronls

19CSB201 — Operating Systems/ Unit-11/ Deadlock: System Model & Characterization 47

