
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II Process Scheduling And Synchronization

Topic: Deadlock: System Model & Characterization

Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

219CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock

19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization 3

A process requests resources; if the resources are not available at that
time, the process enters a waiting state.

Sometimes, a waiting process is never again able to change state,
because the resources it has requested are held by other waiting
processes. This situation is called a deadlock.

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request

• use

• release

419CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

• A process must request a resource before using it and must release
the resource after using it.

• A process may request as many resources as it requires to carry out
its designated task.

• Obviously, the number of resources requested may not exceed the
total number of resources available in the system. In other words, a
process cannot request three printers if the system has only two.

19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization 5

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is
waiting for a resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.

Necessary Conditions

Deadlock can arise if four conditions hold simultaneously.

619CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the active processes in

the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system

• request edge – directed edge Pi  Rj

• assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.

719CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi

Rj

Rj

819CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example of a Resource Allocation Graph

919CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource Allocation Graph With A Deadlock

10
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Graph With A Cycle But No Deadlock

11
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Basic Facts

• If graph contains no cycles  no deadlock

• If graph contains a cycle
• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

1219CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock state:
• Deadlock prevention

• Deadlock avoidence

• Allow the system to enter a deadlock state and then
recover

• Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX

1319CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

• we can deal with the deadlock problem in one of three ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that
the system will never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and
recover.

• We can ignore the problem altogether and pretend that deadlocks
never occur in the system.

19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization 14

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources (e.g.,
read-only files); must hold for non-sharable resources

• Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources
• Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the
process has none allocated to it.

• Low resource utilization; starvation possible

For a deadlock to occur, each of the four necessary conditions must hold. By
ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock.

Restrain the ways request can be made

1519CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock Prevention (Cont.)

• No Preemption –
• If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being
held are released

• Preempted resources are added to the list of resources for which the
process is waiting

• Process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting

• Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing order
of enumeration

1619CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

1719CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account

B, and Transaction 2 transfers $50 from account B to

account A

one thread might invoke

transaction(checking account, savings account, 25);

and another might invoke

transaction(savings account, checking account, 50);

1819CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock Avoidance

• Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need

• The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

• Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

Requires that the system has some additional a priori information

available

1919CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Safe State

• When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on

2019CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Basic Facts

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility of deadlock

• Avoidance  ensure that a system will never enter an unsafe
state.

• A state is safe if the system can allocate resources to each
process (up to its maximum) in some order and still avoid a
deadlock. More formally, a system is in a safe state only if
there exists a safe sequence.

2119CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Safe, Unsafe, Deadlock State

22
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Avoidance Algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

2319CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Allocation Graph Algorithm

• Claim edge Pi  Rj indicated that process Pj may request
resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process requests
a resource

• Request edge converted to an assignment edge when the
resource is allocated to the process

• When a resource is released by a process, assignment edge
reconverts to a claim edge

• Resources must be claimed a priori in the system

2419CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Allocation Graph

25
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Unsafe State In Resource-Allocation Graph

26
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request edge to
an assignment edge does not result in the formation of a cycle in
the resource allocation graph

2719CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return them in
a finite amount of time

2819CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request
at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

2919CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

3019CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since
resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as
follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is restored

3119CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example of Banker’s Algorithm

• 5 processes P0 through P4;
3 resource types:

A (10 instances), B (5instances), and C (7 instances)
• Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

3219CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

3319CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example: P1 Request (1,0,2)

• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0
P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies
safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

3419CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

The system may provide:
• An algorithm that examines the state of the system to determine
whether a deadlock has occurred
• An algorithm to recover from the deadlock

3519CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Single Instance of Each Resource Type

• Maintain wait-for graph
• Nodes are processes

• Pi  Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

3619CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

37
19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model

& Characterization

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of
available resources of each type

• Allocation: An n x m matrix defines the number of resources
of each type currently allocated to each process

• Request: An n x m matrix indicates the current request of
each process. If Request [i][j] = k, then process Pi is
requesting k more instances of resource type Rj.

3819CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4

3919CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in

deadlocked state

4019CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

4119CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Example (Cont.)

• P2 requests an additional instance of type C
Request

A B C
P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient resources to fulfill other

processes requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4

4219CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Detection-Algorithm Usage

• When, and how often, to invoke depends on:
• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not be
able to tell which of the many deadlocked processes “caused”
the deadlock.

4319CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

4419CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart process for
that state

• Starvation – same process may always be picked as victim,
include number of rollback in cost factor

4519CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization

19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization 46

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-II/ Deadlock: System Model & Characterization 47

