
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19CSB201 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II Process Scheduling And Synchronization

Topic: Process Synchronization: Semaphores

Semaphores

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/ Process
Synchronization: Semaphores

A semaphore is a variable or abstract data type used to control access
to a common resource by multiple threads and avoid critical section
problems in a concurrent system such as a multitasking operating
system. Semaphores are a type of synchronization primitive.

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait() and
signal() .

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Semaphore Usage

Operating systems often distinguish between counting and binary
semaphores.

The value of a counting semaphore can range over an unrestricted
domain.

The value of a binary semaphore can range only between 0 and 1.
Thus, binary semaphores behave similarly to mutex locks.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Counting semaphores

Counting semaphores can be used to control access to a given
resource consisting of a finite number of instances. The semaphore is
initialized to the number of resources available. Each process that
wishes to use a resource performs a wait() operation on the
semaphore (thereby decrementing the count). When a process
releases a resource, it performs a signal() operation (incrementing the
count). When the count for the semaphore goes to 0, all resources
are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

In process P1 , we insert the statements

Because synch is initialized to 0, P2 will execute S2 only after P1 has
invoked signal(synch) , which is after statement S1 has been executed.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Semaphore Implementation

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

The block() operation suspends the process that invokes it.

The wakeup(P) operation resumes the execution of a blocked process
P.

These two operations are provided by the operating system as basic
system calls.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Deadlocks and Starvation

• The implementation of a semaphore with a waiting queue may result
in a situation where two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes.
The event in question is the execution of a signal() operation. When
such a state is reached, these processes are said to be deadlocked.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

starvation

• Another problem related to deadlocks is indefinite blocking or
starvation, a situation in which processes wait indefinitely within the
semaphore. Indefinite blocking may occur if we remove processes
from the list associated with a semaphore in LIFO (last-in, first-out)
order

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Priority Inversion

• A scheduling challenge arises when a higher-priority process needs
to read or modify kernel data that are currently being accessed by a
lower-priority process—or a chain of lower-priority processes. Since
kernel data are typically protected with a lock, the higher-priority
process will have to wait for a lower-priority one to finish with the
resource. The situation becomes more complicated if the lower-
priority process is preempted in favor of another process with a
higher priority.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

As an example, assume we have three processes— L, M, and H —
whose priorities follow the order L < M < H. Assume that process H
requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R.
However, now suppose that process M becomes runnable, thereby
preempting process L. Indirectly, a process with a lower priority—
process M—has affected how long process H must wait for L to
relinquish resource R.

This problem is known as priority inversion. It occurs only in systems
with more than two priorities, so one solution is to have only two
priorities.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

Typically these systems solve the problem by implementing a priority-
inheritance protocol. According to this protocol, all processes that
are accessing resources needed by a higher-priority process inherit
the higher priority until they are finished with the resources in
question. When they are finished, their priorities revert to their
original values. In the example above, a priority-inheritance protocol
would allow process L to temporarily inherit the priority of process H,
thereby preventing process M from preempting its execution. When
process L had finished using resource R, it would relinquish its
inherited priority from H and assume its original priority. Because
resource R would now be available, process H —not M—would run
next.

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition, Wiley India Pvt Ltd,

2009.)

T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson Education, 2010

REFERENCES:

R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 9th

Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th Edition, Prentice

Hall, 2011

REFERENCES

19CSB201 – Operating Systems/ Unit-II/ Process Scheduling and Synchronization/
Process Synchronization: Semaphores

