

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

MILNE'S PREDICTOR dND CORRECTOR METHODS

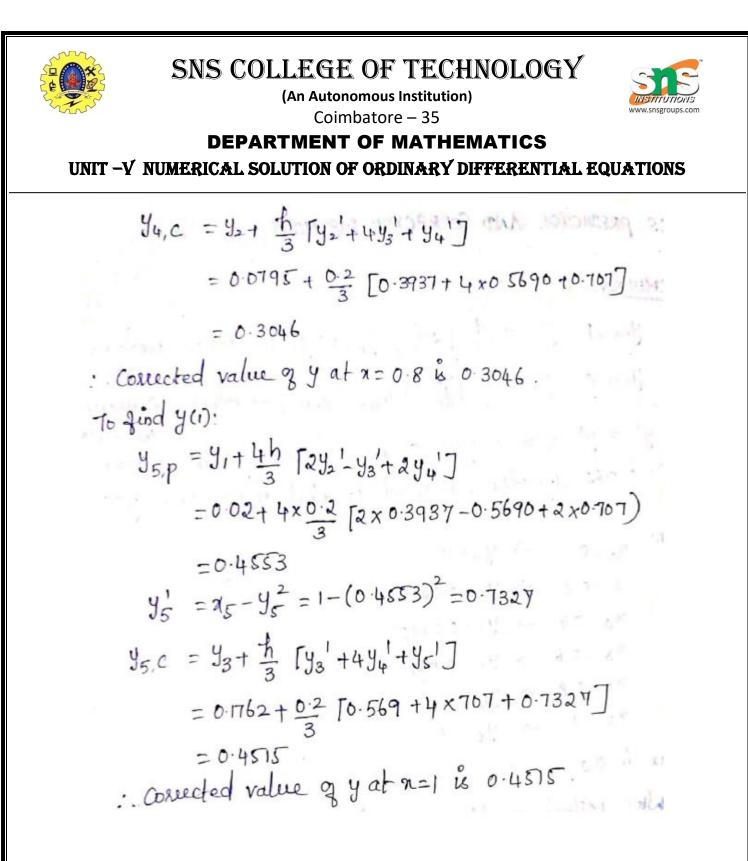
JORMULAS:

$$y_{n+1}, P = y_{n-3} + \frac{4h}{3} [2y'_{n-2} - y'_{n-1} + 2y'_{n}] \rightarrow Milne's predictor
y_{n+1}, C = y_{n-1} + \frac{h}{3} [y'_{n-1} + 4y'_{n} + y'_{n+1}] \rightarrow Milne's Conuclea
gormulae
Solve $y' = \pi - y^{2}$, $\alpha \le \pi \le 1$, $y(\alpha) = 0$, $y(0,2) = 0.02$, $y(0,4) = 0.0795^{-1}$
 $y(0,6) = 0.7162$ by Milne's methode to gind $y(0.8)$ and $y(1)$.
Soln:
 $g_{1} = 0.2 \rightarrow y_{0} = 0$
 $\chi_{1} = 0.2 \rightarrow y_{0} = 0$
 $\chi_{2} = 0.4 \rightarrow y_{2} = 0.0795^{-1}$
 $\chi_{3} = 0.6 \rightarrow y_{3} = 0.7162$
 $\chi_{4} = 0.8 \rightarrow y_{4} = ?$
 $\chi_{5} = 1 \rightarrow y_{5} = ?$
Here $h = 0.2$.$$

19MAT205- PROBABILITY, STATISTICS & NUMERICAL METHODS S.SINDHUJA/AP/MATHS/SNSCT PAGE - 1 OF 4

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)



Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

White Milne's predictor formula is

$$y_{n+1}$$
, $p = y_{n-3} + \frac{4h}{3} [2y'_{n-2} - y'_{n-1} + 2y'_{n}]$
 y_{4} , $p = y_{0+1} \frac{4h}{3} [2y'_{1} - y_{2} + 2y'_{3}]$
 G_{1} , $y' = x - y^{2}$
 $y'_{1} = x_{1} - y_{1}^{2} = 0.2 - (0.02)^{2} = 0.1996$
 $y_{2}^{1} = x_{2} - y_{2}^{2} = 0.4 - (0.0795)^{2} = 0.3937$
 $y'_{3} = x_{3} - y_{3}^{2} = 0.6 - (0.1762)^{2} = 0.5690$
 y_{4} , $p = 0 + 4(0.3) [2 \times 0.1996 - 0.3937 + 2 \times 0.5690]$
 $= 0.3049$
 $y'_{4} = x_{4} - y_{4}^{2} = 0.8 - (0.3049)^{2} = 0.707$.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT -V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

() using Milnie's method find
$$y(4.4) \cdot yn. 5ny' + y^2 - 2 = 0$$

yiven $y(4) = 1$, $y(4.1) = 1.0049$, $y(4.2) = 1.0097$ and
 $y(4.3) = 1.0143$.
Koln: $y_{4,p} = 1.01897$; $y_{4,c} = 1.01874$
(2) using Runge-Kutha method calculate $y(0.1)$, $y(0.2)$ and
 $y(0.3)$ yn that $\frac{dy}{dn} - \frac{2ny}{1+n^2} = 1$, $y(0) = 0$. Taking these
values as starting values find $y(0.4)$ by Milne's method
 $\frac{goln!}{y(0.2)} = 0.2052$
 $y(0.2) = 0.2052$
 $y(0.3) = 0.3176$
 $y(0.4) = 0.4413$

19MAT205- PROBABILITY, STATISTICS & NUMERICAL METHODS S.SINDHUJA/AP/MATHS/SNSCT PAGE - 4 OF 4