

UV-VISIBLESPECTROSCOPY

Principle

- Ultraviolet (UV) visible spectra arises from the transition of valency electrons within a molecule or ion from a lower electronic energy level (ground state E₀)to higher electronic energy level (excited state E₁).
- This transition occurs due to the absorption of UV (wavelength 100- 400 nm) or visible (wavelength 400-750 nm) region of the electronic spectrum by a molecule (or) ion.

OriginofUV- visiblespectroscopy

The actual amount of energy required depends on the difference in energy between the ground state and the excited state of the electrons.

$$\Delta E = E_1 - E_0 = hv$$

- 1. Chromophores
 - > The presence of one or more unsaturated linkages (π -electrons) in a compound is responsible for the colour of the compound, these linkages are referred to as chromophores.
 - ➤ Examples: C=C;-CC-;-C-N;-N-N;C-O; etc.,
- 3. Auxochromes
 - Itreferstoanatomoragroupofatomswhichdoesnotrisetoabsorptionbandonits own, but when conjugate to chromophore will cause a red shift.
 - Examples:-OH,-NH₂,-Cl, -Br, -I,etc.,

Someimportant definitions related to change in wavelength and intensity

1.	Bathochromicshift.(redshift)	Shift tohigherwave length(lower frequencies).
2.	Hypsochromicshift.(blueshift)	Shifttolowerwave length(higher frequencies).
3.	Hyperchromiceffect.	Anincrease in intensity.
4.	Hypochromiceffect.	Andecreasein intensity.

Illustration

Inchloroethylene,CH₂–CHCl,

C=CisachromophoreandClisanauxochrome.

Typesofelectronsinvolvedinorganicmolecule

► The energyabsorbed by a organic molecule involvestransition of valence electrons. The

following three types of electrons are involved in the transition.

S. No	Electrons	Examples	Energyrequiredto excite electrons	Presentin
1.	σ-electrons	Saturated long chain hydrocarbons. (paraffins) (CH ₃ -CH ₂ -CH ₂ -CH ₃)	HigherthanUVlight	Singlebond
2.	π -electrons	Unsaturatedhydrocarbons like trienes and aromatic compounds.	UV(or)visiblelight	Doublebond and triple bonds. (unsaturated bond)
3.	n-electrons	Organiccompounds containingN, O(or) halogens.	UVradiation	Unshared(or) non bonded electrons.

Thus, the unsaturated hydrocarbons and compounds containing N,O,S may absorb visible (or) UV radiations.

Examples: The threetypesofelectrons are shown in the molecule (HCHO).

Instrumentation

Components

- 1. Radiationsource
 - Invisible UV spectrometer, the most commonly used radiations are hydrogenor deuterium lamps.
 - Requirementsofaradiationsource
 - (a) Itmustbestableandsupplycontinuous radiation.
 - (b) It mustbeofsufficientintensity.
- 2. Monochromators
 - > The monochromatorisusedtodispersetheradiationaccordingtothe wavelength.
 - The essential elements of a monochromator are an entrance slit, a dispersing element and an exit slit.
 - > The dispersing element may be a prismorgrating (or) a filter.
- 3. Cells(samplecellandreferencecell)
- 4. Detectors

- ▶ barrier layercell,photomultipliertubeandphotocell.
- The detector converts the radiation, falling on which, into current. The current is directly proportional to the concentration of the solution.

5. Recordingsystem

The signal from the detectors is finally received by the recording system. The recordingis done by the recording pen.

IIWorking of UV and visible spectrophotometer

- > Theradiation from the source is allowed to pass through the monochromator unit.
- > Themonochromatorallowsanarrowrangeofwavelengthto passthroughanexitslit.
- > Thebeamofradiationcomingoutofthemonochromatorissplitintotwo equalbeams.
- One-half of thebeams(thesamplebeam)isdirectedtopassthrough transparentcell containing a solution of the compound to be analyzed.
- Anotherhalf(thereferencebeam)isdirectedtopassthroughanidenticalcellthatcontains only the solvent.
- > Theinstrumentisdesigned in such away that it can compare the intensities of the two beams.
- If the compound absorbs light at a particular wavelength, then intensity of the sample beam (I) will be less than that of the reference beam (I₀).
- The instrument gives output graph, which is a plot of wavelength Vs absorbance of thelight. This graph is known as an absorption spectrum.

Applications

- 1. Predictingrelationshipbetweendifferent groups
- 2. Qualitativeanalysis
- 3. Detectionofimpurities
- 4. Quantitative analysis
- 5. Determinationofmolecular weight
- 6. Dissociationconstantsofacidsandbases

- 7. Studyoftautomericequilibrium
- 8. Studyingkineticsofchemicalreactions
- 9. Determinationofcalciuminblood serum