

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

CONTRACTO

- Water flows at the rate of 65 kg/min through a double pipe counter flow heat exchanger. Water is heated from 50° C to75°C by an oil flowing through the tube. The specific heat of the oil is 1.780 kj/kg.K. The oil enters at 115°C and leaves at 70°C the overall heat transfer co-efficient is 340 W/m2K calcualte the following
 - 1. Heat exchanger area
 - 2. Rate of heat transfer

Given:

Hot fluid – oil, Cold fluid – water (T_1, T_2) (t_1, t_2)

Mass flow rate of water (cold fluid), m_o = 65 kg/min

= 65/60 kg/s

 $\mathbf{m}_c = 1.08 \,\mathrm{kg/s}$

Entry temperature of water, t₁ =50° C

Exit temperature of water, t₂ =75° C

Specific heat of oil (Hot fluid), $C_{ph} = 1.780 \; \mathrm{KJ/kg \; K}$

 $= 1.780 \times 10^3 \text{ J/kg K}$

Entry temperature of oil, T₁ =115° C

Exit temperature of water, T₂ =70° C

Overall heat transfer co-efficient, U = 340 w/m2 K.

To find:

- 1. Heat exchanger area, (A)
- 2. Rate of heat transfer, (Q)

Solution:

We know that,

Heat transfer,
$$Q = m_e c_{pe}(t_2 - t_1)$$
 (or) $m_h c_{ph}(T_1 - T_2)$
 $Q = m_e C_{pe}(t_2 - t_1)$
 $Q = 1.08 \times 4186 \times (75 - 50)$
[Specific heat of water, $c_{pe} = 4186 \text{ J/kg K}$]
 $Q = 113 \times 10^3 \text{ W}$

We know that,

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial - LMTD Method - NTU - Effectiveness

- A parallel flow heat exchanger is used to cool 4.2 kg/min of hot liquid of specific heat 3.5 kJ/kg K at 130° C. A cooling water of specific heat 4.18 kJ/kg K is used for cooling purpose of a temperature of 15° C. The mass flow rate of cooling water is 17 kg/min. calculate the following.
 - 1. Outlet temperature of liquid
 - 2. Outlet temperature of water
 - 3. Effectiveness of heat exchanger

Take

Overall heat transfer co-efficient is 1100 W/m² K. Heat exchanger area is 0.30m²

Given:

Mass flow rate of hot liquid, m, = 4.2 kg/min

 $m_{\rm h} = 0.07 \, \text{kg/s}$

Specific heat of hot liquid, $c_{ob} = 3.5 \text{ kJ/kg K}$

 $c_{\rm ph} = 3.5 \times 10^3 \, {\rm J/kg \, K}$

Inlet temperature of hot liquid, $T_1 = 130^{\circ}$ C

Specific heat of hot water, $C_{pc} = 4.18 \text{ kJ/kg K}$

 $C_{ps} = 4.18 \times 10^3 \text{ J/kg K}$

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

Inlet temperature of hot water, $t_1 = 15^{\circ}$ C

Mass flow rate of cooling water, m. = 17 kg/min

 $m_c = 0.28 \text{ kg/s}$

Overall heat transfer co - efficient, U = 1100 w/m2 K

Area, $A = 0.03 \text{ m}^2$

To find:

- 1. Outlet temperature of liquid, (T2)
- 2. Outlet temperature of water, (t2)
- 3. Effectiveness of heat exchanger, (ε)

Solution:

Capacity rate of hot liquid, $C_h = m_h \times C_{ph}$ = 0.07 x 3.5 x 10³

Capacity rate of water,

$$C_0 = m_0 \times C_{pe}$$

= 0.28 x 4.18 x 10³

From (1) and (2),

$$C_{min} = 245 \text{ W/K}.$$

$$=>$$
 $\frac{C_{min}}{C_{max}} = \frac{245}{1170.4} = 0.209$

$$\frac{c_{\text{min}}}{c_{\text{max}}} = 0.209$$
(3)

Number of transfer units, NTU = $\frac{UA}{C_{min}}$

[From HMT data book page no. 152]

To find effectiveness ε, refer HMT data book page no 163

(Parallel flow heat exchanger)

From graph,

Curve
$$\frac{c_{min}}{c_{max}} = 0.209$$

Corresponding Y_{asta} value is 64 %

i.e. $\epsilon = 0.64$

DEPARTMENT OF MECHANICAL ENGINEERING, 16 ME 306/Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT

EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

from HMT data Book

$$\epsilon = \frac{m_i cp_k (T_1 - T_2)}{C_{\min} (T_1 - t_1)}$$

$$0.64 = \frac{130 - T_2}{130 - 15}$$

$$T_2 = 56.4 \, ^{\circ}C$$

To find to

$$m_h cp_h(T_1-T_2) = m_eCp_e (t_2-t_1)$$

 $0.07 \times 3.5 \times 10^3 (130-56.4) = 0.28 \times 4186 (t_2-15)$
 $t_2 = 30.4$ °C

Maximum possible heat transfer

$$Q_{max} = C_{min} (T_1 - t_1)$$

= 245 (130 - 15)

$$Q_{max} = 28.175 \text{ W}$$

Actual heat transfer rate

$$Q = \epsilon \times Q_{max}$$

= 0.64 × 28.175
 $Q = 18.032 \text{ W}$

We know that.

Heat transfer,
$$Q = m_e C_{pe}(t_2 - t_1)$$

=> 18.032 = 0.28 x 4.18 x 10³ (t₂ - 15)
=> 18.032 = 1170.4 t₂ - 17556
=> t₂ = 30.40°C

Outlet temperature of cold water, $t_2 = 30.40$ °C

We know that,

Heat transfer,
$$Q = m_h C_{ph}(T_1 - T_2)$$

=> 18.032 = 0.07 x 3.5 x 10³ (130 - T₂)
=> 18.032 = 31850 - 245 T₂
=> T₂ = 56.4°C

Outlet temperature of hot liquid, $T_2 = 56.4$ °C

DEPARTMENT OF MECHANICAL ENGINEERING, 16 ME 306/Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT

EXCHANGERSTopic - Tutorial- LMTD Method - NTU - Effectiveness

3.Hot chemical products ($C_{ph} = 2.5 \text{ kJ/kg K}$) at 600° C and at a flow rate of 30 kg/s are used to heat cold chemical products ($C_p = 4.2 \text{ kJ/kg K}$) at 200° C and at a flow rate 20 kg/s in a parallel flow heat exchanger. The total heat transfer is 50 m² and the overall heat transfer coefficient may be taken as 1500 W/m² K. calculate the outlet temperatures of the hot and cold chemical products.

Given: Parallel flow heat exchanger

$$T_{h1} = 600^{\circ} \text{ C}$$
; $m_h = 30 \text{ kg/s}$
 $C_{ph} = 2.5 \text{ kJ/kg K}$
 $T_{c1} = 100^{\circ}\text{C}$; $m_c 28 \text{ kg/s}$
 $C_{pc} = 4.2 \text{kJ/kg K}$
 $A = 50 \text{m}^2$
 $U = 1500 \text{ W/m}^2\text{K}$

Find:

Solution

The heat capacities of the two fluids

$$C_h = m_h c_{ph} = 30 \text{ x } 2.5 = 75 \text{ kW/K}$$

$$C_u = m_e c_{pc} = 28 \text{ x } 4.2 = 117.6 \text{ kW/K}$$
The ratio $\frac{c_{min}}{c_{max}} = \frac{75}{117.6} = 0.64$

$$NTU = \frac{0.4}{c_{min}} = \frac{1500 \text{ x } 50}{75 \text{ x } 10^3} = 1.0$$

For a parallel flow heat exchanger, the effectiveness from Fig. 13.15 corresponding to $\frac{c_{min}}{c_{max}}$

and NTU

$$\epsilon = 0.48$$

We know that

$$\epsilon = \frac{Actual\ heat\ transfer}{Max\ possible\ heat\ transfer}$$

$$= \frac{m_h c_{ph} (r_{h1} - r_{h2})}{c_{min} (r_{h1} - r_{c1})}$$

$$\epsilon = \frac{(T_{h1} - T_{h2})}{(T_{h1} - T_{c1})}$$

$$0.48 = \frac{600 - T_{h2}}{600 - 100}$$

DEPARTMENT OF MECHANICAL ENGINEERING, 16 ME 306/Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT

EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

$$T_{102} = 360^{\circ}C$$

We know that

Heat lost by the hot product = Heat gained by the cold product

$$m_b c_{ph} (T_{h1} - T_{h2}) = m_b c_{ph} (T_{c2} - T_{c1})$$

 $75(600 - 360) = 117.6 (T_{c2} - 100)$
 $T_{c2} = 253.06^{\circ} C$

4. Estimate the diffusion rate of water from the bottom of a tube of 10mm diameter and 15cm long into dry air 25°C. Take the diffusion coefficient of water through air as 0.235 x 10°4m²/s

Civen:

D =
$$0.255 \times 10^{4} \text{m}^{2}/\text{s}$$

Area (A) = $\frac{\pi}{4} d^{2} = \frac{\pi}{4} (0.01)^{2} = 7.85 \times 10^{-5} \text{ m}^{2}$
R_o = $8314 \text{ J/kg} - \text{mole K}$
T = $25 + 273 = 298 \text{ K}$
M_w = molecular weight of water = 18
P = Total pressure = $1.01325 \times 10^{5} \text{ N/m}^{2}$
X₂- X₁ = 0.15m
P_{w1} = partial pressure at 25° C = $0.03166 \times 10^{5} \text{ N/m}^{2}$
P_{w2} = 0

Find:

Diffusion rate of water (or) Mass transfer rate of water.

Solution

We know that

Molar rate of water (Ma)

$$\begin{split} M_a &= \frac{DA}{R_o T}, \frac{P}{x_2 - x_3} \ln \left(\frac{P_{az}}{P_{az}} \right) \\ &= \frac{0.255 \times 10 - 4 \times 7.05 \times 10 - 5 \times 1.01325 \times 105}{0.014 \times 290 \times 0.15} \times \left(\frac{1.01325 - 0.03166}{1.01325 - 0.03166} \right) \\ Here & P_{a2} = P - P_{w2} \; , \; P_{a1} = P - P_{w1} \\ M_a &= 1.72 \times 10^{-11} \; kg\text{-mole/s} \end{split}$$

Diffusion rate of water $(M_*) = 3.1 \times 10^{40} \text{ kg/s}$

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial - LMTD Method - NTU - Effectiveness

6. A counter flow heat exchanger is employed to cool 0.55 kg/s (C_p = 2.45 kj/kg°C) of oil from 115°C to 40°C by the use of water. The inlet and outlet temperature of cooling water are 15°C and 75°C respectively. The overall heat transfer coefficient is expected to be 1450 W/m²°C.

Using NTU method, calculate the following:

- The mass flow rate of water.
- The effectiveness of heat exchanger.
- (iii) The surface area required.

Given:

Counter flow HE

 $M_b = 0.55 \text{ kg/s}$

 $C_{p_0} = 2.45 \text{kj/kg}^{\circ}\text{C}$

T₁=115°C

T₂ = 40°C

 $t_1 = 15^{\circ}C$

 $t_2 = 75^{\circ}C$

U=1450 W/m²°C

To find:

- 1. The mass flow rate of water. (m_c)
- 2. The effectiveness of heat exchanger. (e)
- The surface area required.(A)

Solution:

For $\in -NTU$ method from HMT date book

$$Q = \in C_{min}(T_1 - t_1)$$

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

To find m.

Use energy balance equation.

Heat lost by hot fluid = Heat gained by cold fluid

$$m_h C_{p_h} (T_1 - T_2) = m_e C_{p_e} (t_2 - t_1)$$

 $0.55 \times 2450 (115 - 40) = m_e \times 4186 (75 - 15)$

 $\mathbf{m}_c = 0.40 \log/s$

Heat capacity rate of hot fluid = Ch = mh - Cps

 $= 0.55 \times 2.45$

 $C_0 = 1.35 \text{ kw/K}$

Heat capacity rate of cold fluid = Cc = mc - Cn.

 $= 0.40 \times 4.186$

 $C_0 = 1.67 \text{kw/K}$

$$\in = \frac{m_h c_{\mu_h(T_1-T_2)}}{c_{\min} (\tau_1-\tau_2)}$$

$$=\frac{115-40}{115-15}$$

Q = 0.75 x 1350 (115 - 15)

Q = 101.250W

 $Q = UA (\Delta T)_{lm}$

 $A = Q/U(\Delta T)_{lm}$

$$(\Delta T)_{lm} = \frac{(r_1-t_2)-(r_2-t_1)}{t\pi \begin{bmatrix} [r_3-t_2)\\ (r_2-t_1) \end{bmatrix}}$$

= $\frac{(115-75)-(40-15)}{t\pi \begin{bmatrix} (133-76) \end{bmatrix}}$

$$A = \frac{101.250}{1450 \times 31.5}$$

$$A = 2.19 \text{ m}^2$$

DEPARTMENT OF MECHANICAL ENGINEERING, 16ME 306/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Tutorial- LMTD Method - NTU - Effectiveness

References:

- 1. Kothandaraman C.P "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi,4th Edition 2012 (Unit I, II, III, IV, V).
- 2. Frank P. Incropera and David P. DeWitt, "Fundamentals of Heat and Mass Transfer", John Wiley and Sons, New Jersey,6th Edition1998(Unit I,II,III,IV, V)
- 3. MIT open courseware https://ocw.mit.edu/courses/mechanical-engineering

Other web sources