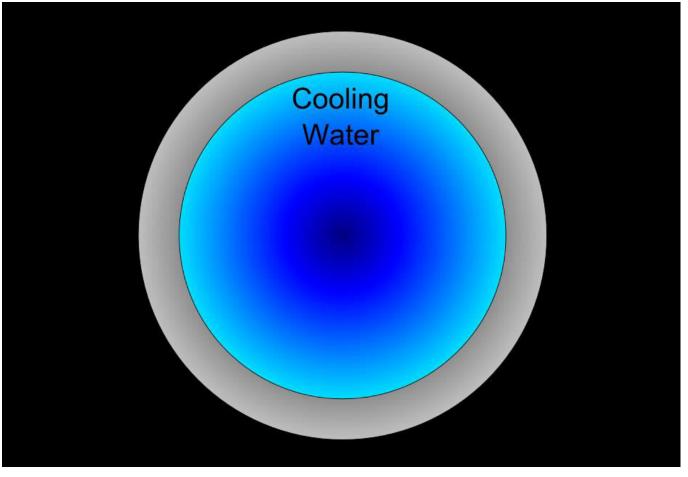


DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Practical examples

The Inlet of H2's Cross Flow, Staggered Tube Heat Exchanger



Cross Sectional View of the H2 Cooler

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Single Tube Control Volume

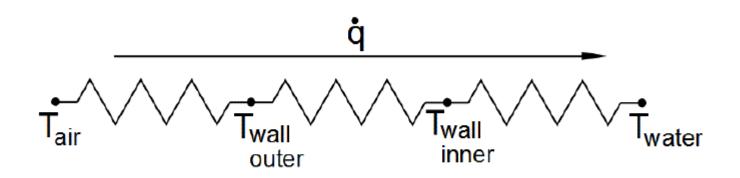


Figure 10 - Equivalent Resistance Circuit Analogy

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

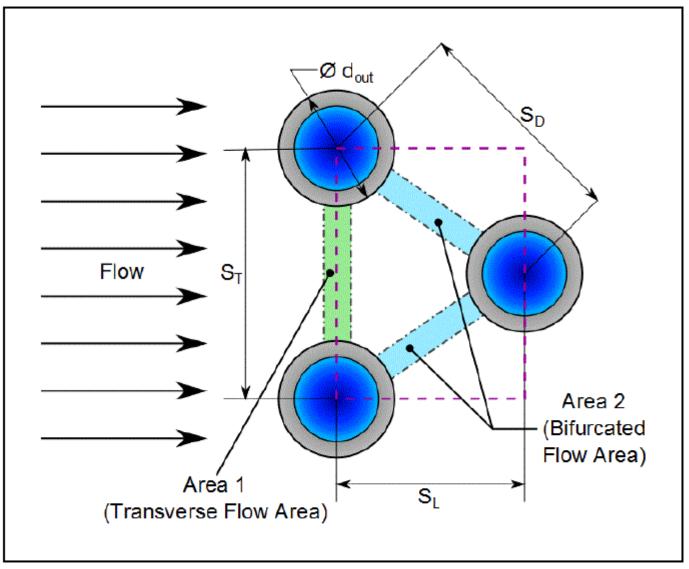


Figure 11 - Staggered Tube Free Body Diagram

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

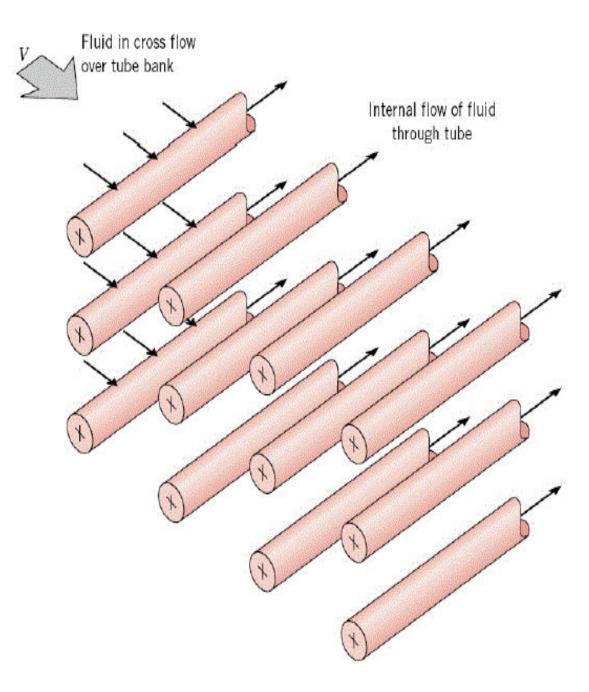


Figure 7.10 Schematic of a tube bank in cross flow.

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Tube Bank Geometry

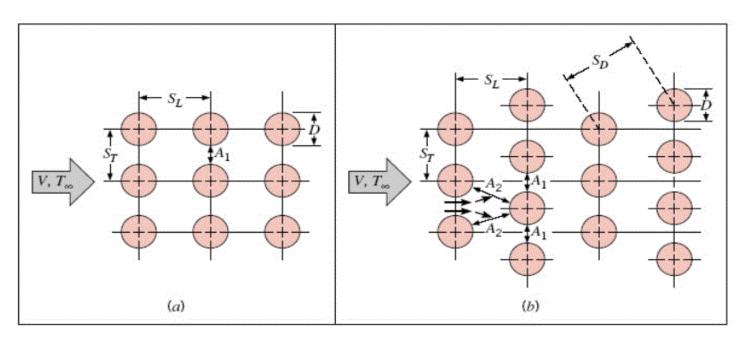


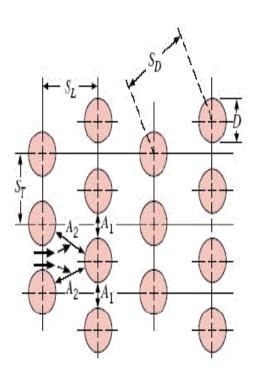
Figure 7.11 Tube arrangements in a bank. (a) Aligned. (b) Staggered.

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

Tube Bank Calculations

$$\operatorname{Re}_{D,\max} = \frac{\rho V_{\max} D}{\mu} = \frac{V_{\max} D}{\nu}$$


 \rightarrow V_{max} depends on tube bank geometry...

 \rightarrow If tubes are aligned or if they're staggered with $2A_2 > A_1$ then

$$V_{\max} = \frac{S_T}{S_T - D} V$$

 \rightarrow Otherwise, if staggered and $2A_2 \leq A_1$

$$V_{\max} = \frac{S_T}{2(S_D - D)}V$$

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Heat Transfer Correlations for Tube Banks

<u>Zukauskas</u>

$$\overline{\mathrm{Nu}}_{D} = C \operatorname{Re}_{D,\max}^{m} \operatorname{Pr}^{0.36} \left(\frac{\mathrm{Pr}}{\mathrm{Pr}_{s}}\right)^{1/4} \qquad (Eq. 7.58) \\ (7.64 \text{ in } 6^{th} Ed.)$$

- → Properties evaluated at arithmetic mean of inlet & outlet temp
- \rightarrow C and m from Table 7.5 (Table 7.7 in 6th Ed.)
- → If number of tubes (longitudinal NL) is < 20 use Table 7.6 (7.8 in 6th Ed.)

DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Table 7.5 Constants of Equation 7.56 for the tube bank in cross flow [15]

Configuration	$Re_{D,\max}$	С	m		
Aligned	10-10 ²	0.80	0.40		
Staggered	$10-10^2$	0.90	0.40		
Aligned	$10^2 - 10^3$	Approximate as	a single		
Staggered	$10^2 - 10^3$	(isolated) cylinder			
Aligned	$10^{3}-2 \times 10^{5}$	0.27	0.63		
$(S_T/S_L > 0.7)^a$					
Staggered	$10^{3}-2 \times 10^{5}$	$0.35(S_T/S_L)^{1/5}$	0.60		
$(S_T/S_L < 2)$					
Staggered	$10^{3}-2 \times 10^{5}$	0.40	0.60		
$(S_T/S_L > 2)$					
Aligned	$2 \times 10^{5} - 2 \times 10^{6}$	0.021	0.84		
Staggered	2×10^{5} – 2×10^{6}	0.022	0.84		

"For $S_T/S_L < 0.7$, heat transfer is inefficient and aligned tubes should not be used.

Table 7.6 Correction factor C_2 of Equation 7.57 for $N_2 \le 20$ ($Re_{P_2} \ge 10^3$) [15]

for $N_L \leq 20$ ($Re_{D,max} \approx 10^\circ$) [15]										
N _L	1	2	3	4	5	7	10	13	16	
Aligned	0.70	0.80	0.86	0.90	0.92	0.95	0.97	0.98	0.99	
Staggered	0.64	0.76	0.84	0.89	0.92	0.95	0.97	0.98	0.99	

(Eq. 7.60)

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35 DEPARTMENT OF MECHANICAL ENGINEERING 16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION Topic - Flow over Bank of tubes

Other Correlations for Tube Banks

Grimison (Equation and Table exist only in 6th edition)

$$\overline{\mathrm{Nu}}_{D} = 1.13C_{1} \operatorname{Re}_{D,\mathrm{max}}^{m} \operatorname{Pr}^{1/3}$$

- \rightarrow Properties evaluated at T_{film}
- $\rightarrow C_1$ and *m* determined from Table 7.5 in 6th Edition
- \rightarrow If number of tubes (longitudinal N₁) is < 10 use Table 7.6 (6th Ed)

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT II – CONVECTION

Topic - Flow over Bank of tubes

 TABLE 7.5
 Constants of Equations 7.50 and 7.52 for airflow over a tube bank of 10 or more rows [19]

S _L /D	S_T/D									
	1.25		1.5		2.0		3.0			
	<i>C</i> ₁	m	Ci	, m	<i>C</i> ₁	т	C ₁	m		
Aligned										
1.25	0.348	0.592	0.275	0.608	0.100	0.704	0.0633	0.752		
1.50	0.367	0.586	0.250	0.620	0.101	0.702	0.0678	0.744		
2.00	0.418	0.570	0.299	0.602	0.229	0.632	0.198	0.648		
3.00	0.290	0.601	0.357	0.584	0.374	0.581	0.286	0.608		
Staggered										
0.600	<u></u>	· ·	· ·			<u> </u>	0.213	0.636		
0.900	·	·	· ·	(0.446	0.571	0.401	0.581		
1.000	·	·	0.497	0.558			/	<u> </u>		
1.125	<u>,</u>	<u> </u>			0.478	0.565	0.518	0.560		
1.250	0.518	0.556	0.505	0.554	0.519	0.556	0.522	0.562		
1.500	0.451	0.568	0.460	0.562	0.452	0.568	0.488	0.568		
2.000	0.404	0.572	0.416	0.568	0.482	0.556	0.449	0.570		
3.000	0.310	0.592	0:356	0.580	0.440	0.562	0.428	0.574		

TABLE 7.6 Correction factor C_2 of Equation 7.53 for $N_L < 10$ [20]

NL	1	2	3	-4	5	6	7	8	9
Aligned	0.64	0.80	0.87	0.90	0.92	0.94	0.96	0.98	0.99
Staggered	0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99