

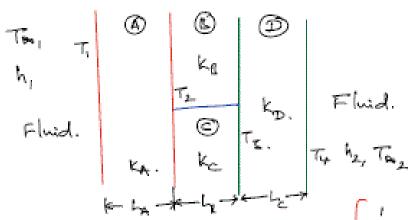
SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Composite Systems

Topic - Composite Systems Composite wall! Thermal resistances in series: "=UAAT

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35



DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION **Topic - Composite Systems**

where, U= 1 is the overall heat transfer

Series-parallel arrangement

$$\frac{1}{R_{\text{parallel}}} = \frac{1}{R_{\text{R}}} + \frac{1}{R_{\text{C}}} = \frac{R_{\text{R}} + R_{\text{C}}}{R_{\text{R}} \times R_{\text{C}}} \rightarrow \frac{R_{\text{R}} = \frac{L_{\text{R}}}{K_{\text{R}} A_{\text{R}}}}{R_{\text{C}} \times R_{\text{C}}}$$

$$\frac{1}{R_{\text{R}} + R_{\text{C}}} = \frac{1}{R_{\text{R}} \times R_{\text{C}}} \rightarrow \frac{R_{\text{R}} = \frac{L_{\text{R}}}{K_{\text{R}} A_{\text{R}}}}{R_{\text{C}} \times R_{\text{C}}} \rightarrow \frac{1}{R_{\text{C}} \times R_{\text{C}}}$$

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Composite Systems

Casel: No convective BCi. Total resistance RHJ= R,+R2 Rtof = In(F) + In(F) Hest transfer. Q = (T_1-T_2) = (T_2-T_3) R.= (T,-T2): R2= (T2-T2) $-1. \quad Q = \frac{\left(T_{i} - T_{k}\right)}{R_{k+1}} = \frac{\left(T_{i} - T_{k}\right)}{\ln\left(\frac{r_{k}}{r_{k}}\right)}$