

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION Topic - Basic Concepts - Mechanism of Heat Transfer

Modes of Heat Transfer

Conduction: An energy transfer across a system boundary due to temperature difference by

the mechanism of inter-molecular interaction.

as conduction needs matter. by Conduction rate equation Α is governed by Fourier Τ, q =- K.A.VT. ℚ.

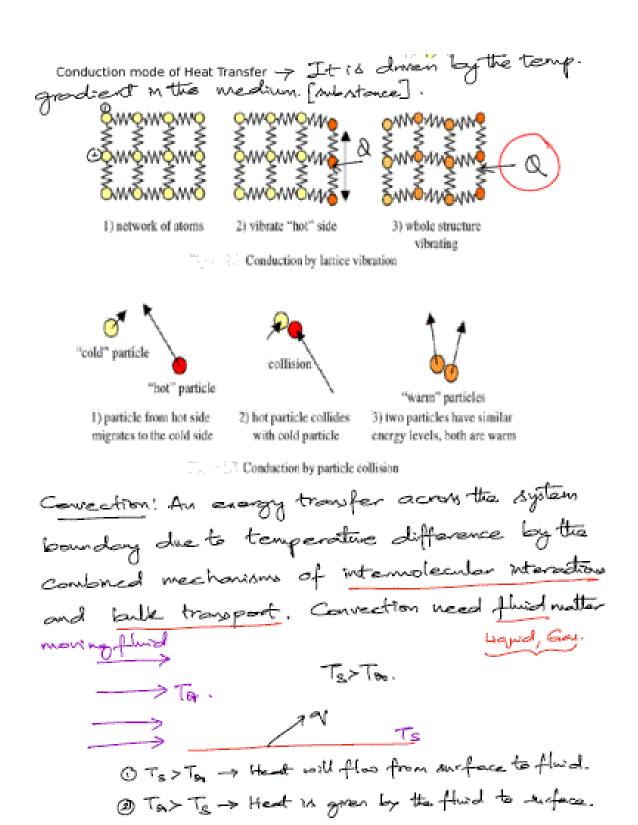
VT = Goodiers of temp (K/m) VT = DT i + DT j + DT K. J Egm.

9/x=-KAdT Cartesian. 9/r=-KArdT Circular Y> ov=- KArdI Coordinates.

Fourier las of heat conduction:

a) Heat flux av' is defined as the rate of heat transfer unit area normal to the direction.

& Former las states that the heat flux is proportional to the temperature gradient.


27 - Temperature gradient. ard ax

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Basic Concepts – Mechanism of Heat Transfer

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Basic Concepts – Mechanism of Heat Transfer

Nestoni las of cooling:

where, Q = Heat flow from the surface (scalor)

h = Heat transfer coefficient (W/LK).

As = Surface area. [Fluid in contact].

AT = Temperature diff b/n surface & fluid.

Convection

Forced.

(External force)

(Buoyancy forces)

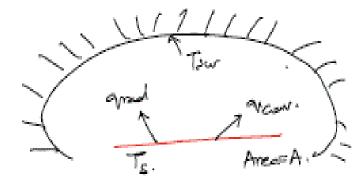
(I) hot surface heats 2) warm air rises 3) air is replaced 4) circulation begins by cool air

Table 1: Typical values of the convective heat transfer coefficient h

Type of flow	h ,W/(m ² K)	
Free convection		
Gases	2-25	
Liquids	50-1000	
Forced c	onvection	
Gases	25-250	
Liquids	50-20000	
Convection with phase change		
Boiling or Condens	ation 2500-100000	

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Basic Concepts – Mechanism of Heat Transfer


Rediation: Radiation heat transfer involves transfer of heat by electromagnetic radiation that arises due to the temperature of the lady. Radiation doesnot need matter (not mandatory).

E= σ∈ Ts4.

where, E=Emissive power of asuface.

= Stefan Boltzman constant (5.67x18 by

Ts = Absolute surface temp [K].

Net heat transfer.

between 2 wfaces $q = Q = \sigma G(T_S^4 - T_{NC}^4)$

Table 2: Emissivity values of different materials

Material	Emissivity value
Aluminium foil	0.07
Anodized abuninium	0.82
Polished copper	0.03
Publied gold	0.03
Polished solver	0.02
Polished stainless steel	0.17
Black paint	0.98
White paint	0.90

Material	Emissivity value
White paper	0.92-97
Asphalt povement	0.85-0.93
Red brick	0.93-0.96
Hamuen skip	0.95
Wood	0.82-0.92
Soil	0.93-0.96
Water	0.96
Vegetation	0.92-0.96