

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Legendre's Linear Differential Equation

$$\frac{(ax+b)^n}{dx^n} + a_1(ax+b)^{n-1} \underline{\frac{d^{n-1}y}{dx^{n-1}}} + a^2(ax+b)^{n-2} \underline{\frac{d^{n-2}y}{dx^{n-2}}}$$

+···· +
$$a_{n-1}(ax+b)\frac{dy}{dx} + a_n y = Q(x) \rightarrow 0$$

Take
$$0x+b=e^{\frac{\pi}{2}}$$

$$\frac{\pi}{2} = \log (ax+b).$$

$$\frac{(ax+b)}{2} = ab'$$

$$\frac{(ax+b)^2}{2} = a^2 b'(b'-1)$$

$$\frac{(ax+b)^3}{2} = a^3 b'(b'-1)(b'-2)$$
and so on.

$$(2x+3)^{2}y'' - (2x+3)y' + 2y = 6x$$

Given
$$[(2x+3)^2p^2 - (2x+3)D+2]y = 6x$$

Take $2x+3=e^x \Rightarrow 2x=e^x-3$

Take
$$2x+3=e^{x} \Rightarrow 2x=e^{x}-3$$
 $\Rightarrow 2x=e^{x}-3$ $\Rightarrow 2x=e^{x}-3$

$$(2x+3)D = 2D'$$

 $(2x+3)^2D^2 = 4D'(D'-1)$

(1)
$$\Rightarrow$$
 $[4D'(D'-1) - 2D' + 2]y = 6[\frac{e^{x}-3}{2}]$
 $[4D'^{2} + 2D' + 2]y = 3[e^{x}-3]$
 $[4D'^{2} + 2]y = 3e^{x}-9$ which is a linear

coeffectents.

Scanned with CamScanner
$$\frac{d^2y}{dx^2} - (x+2)\frac{dy}{dx} + y = 3x + 4$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Legendre's Linear Differential Equation

Soln.

Given
$$[(x+2)^2D^2 - (x+2)D + i]y = 3x+4 \rightarrow (i)$$

Take $x+2=e^{7} \Rightarrow x=e^{7}-2$
 $x = \log |x+2)$
 $(x+2)D = D^1$
 $(x+2)^2D^2 = D^1(D^1)$
 $(x$