

(An Autonomous Institution) Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

Gauss Divirgence theorem:

The furface integral of normal component of vector function F own a closed simplace of enclosing Volume V is equal to the volume integral of divergence of F taking through cut the volume V i.e $\text{If } \vec{F} \cdot \hat{h} ds = \text{If } \vec{v} \cdot \vec{F} dv$

Verify the gauss divergence theorm (UIDT) for $\vec{F} = HXZ\vec{I} - y^2\vec{j} + yZ\vec{k}$ once the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

So need with

$$\int_{S} \vec{r} \cdot \hat{n} \, ds \cdot \int_{S} \vec{v} \cdot \vec{r} \, dv$$

$$\vec{F} = hyz\vec{i} - y'\vec{j} + yz\vec{k}$$

$$\vec{V} \cdot \vec{F} = \begin{pmatrix} \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} & \vec{i} \vec{k} \frac{\partial}{\partial z} \end{pmatrix} + \begin{pmatrix} hxz\vec{i} - y^2y^2 + yz\vec{k} \end{pmatrix}$$

$$= \frac{2}{2x} (hxz) + \frac{\partial}{\partial y} (-y^2) + \frac{\partial}{\partial z} (yz)$$

$$= hz - y$$

$$\nabla \cdot \vec{F} = hz$$

$$\nabla \cdot \vec{$$

(An Autonomous Institution) Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

CS						
Scann						
Scanned						
With					→ 1 on	
lau.	n n	F. n	ds	-lqn-		sf F. n ds
AECID	ì	HNZ	dydz	21 = 1	H⊄	
Sa OBFC.	-i	- 4× Z ·	dy dx.	H = 0	0	. 0
S3 EBFGI	j .	- y '	drdz.	y = 1	-1	Sich dadz
SH DADC		+43	0x0x	4.0	0	10
SE DOFC.	₹7	92	olz dy	X = 1	У	Ss y dady
S6 OAFB	- K	- y z	dxdy	X = 0	0	0
Je F &				46		

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

If
$$\vec{F}$$
, \vec{h} ds = $\iint_{S_1} + \iint_{S_2} + \iint_{S_3} + \iint_{S_4} + \iint_{S_5} + \iint$

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

Virily jaues diverdence theorem for

$$\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$$
 where \overrightarrow{J} is the subsoid formed by the subsoid formed by the planet $n = c$, $x = a$, $y = c$, $y = b$, the planet $n = c$, $x = a$, $y = c$, $y = b$, the planet $n = c$, $n = c$, $n = c$.

If \overrightarrow{F} . \overrightarrow{n} de $= \iiint_{a \neq b} \overrightarrow{v} \cdot \overrightarrow{F} dv$

Alew:

 $\overrightarrow{U} \cdot \overrightarrow{F} = (\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial x}) \cdot (x^2 \overrightarrow{i} + y \cancel{j} + z^2 \overrightarrow{k})$
 $= \frac{\partial}{\partial x} x^2 + \frac{\partial}{\partial y} y^2 + \frac{\partial}{\partial x} z^2$.

 $= \frac{\partial}{\partial x} x^2 + \frac{\partial}{\partial y} y^2 + \frac{\partial}{\partial x} z^2$.

 $= \frac{\partial}{\partial x} x^2 + \frac{\partial}{\partial y} y + 2z$.

 $\overrightarrow{E} = 2(x + y + z)$

Aft:

 $\overrightarrow{E} = (x + y + z) \cdot (x + y + z) \cdot (x + y + z) \cdot (x + y + z)$
 $= \frac{\partial}{\partial x} (x + y + z) \cdot (x + y + z) \cdot (x + y + z) \cdot (x + y + z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha y) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z) \cdot (\alpha z)$
 $= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \alpha y + \alpha z \right) \cdot (\alpha z)$

(An Autonomous Institution)
Coimbatore-641035.

UNIT- 1 VECTOR CALCULUS

GAUSS DIVERGENCE THEOREM

$$\begin{array}{lll}
 & 2 & \int \left[\frac{a^2b}{2} + \frac{ab^2}{2} + abx \right] dx \\
 & = a \left[\frac{a^2b}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + \frac{ab^2}{2} + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 + ab^2 + ab\frac{x^2}{2} \right] \\
 & = 2 \left[\frac{a^3b^2}{2} + ab^2 +$$

Face	'n	₽. ₽	ean	F.S on s	ds	JSF. A de
AEGID	77	x 2	n = a	a 2	dydz.	Sadydz.
OBFC.	子	-x 2	x = 0	0	dy dr	0
EBF61	Jr	i y 2	4:4	P,	dx dz	S b2 dadz
DADC	-)	- y ?	4:0	0	dxdx	. 0
DOI FC	Ē [™]	T 2	7 = A	e 2	dady	Miggardy
OAFB	-K	- 2)	Z=0	0	dxdy.	0
	1		1			

$$\iint_{\mathcal{F}} \vec{h} \, ds + \iint_{\mathcal{S}} \vec{h} \, ds = \iint_{\mathcal{S}} a' dy \, dz + 0$$

$$= a' \int_{\mathcal{S}} (y)^{b} \, dz$$

$$= a' \int_{\mathcal{S}} b \, dz$$
with

Scanned with with Campanage with

(An Autonomous Institution)
Coimbatore-641035.

UNIT-1 VECTOR CALCULUS

